These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7647950)

  • 1. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane potential changes caused by shocks in guinea pig papillary muscle.
    Zhou X; Smith WM; Rollins DL; Ideker RE
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2536-46. PubMed ID: 8997315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane potential changes caused by monophasic and biphasic shocks.
    Zhou X; Smith WM; Justice RK; Wayland JL; Ideker RE
    Am J Physiol; 1998 Nov; 275(5):H1798-807. PubMed ID: 9815088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts.
    Zhou X; Ideker RE; Blitchington TF; Smith WM; Knisley SB
    Circ Res; 1995 Sep; 77(3):593-602. PubMed ID: 7641329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
    Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial changes in the transmembrane potential during extracellular electric stimulation.
    Zhou X; Knisley SB; Smith WM; Rollins D; Pollard AE; Ideker RE
    Circ Res; 1998 Nov; 83(10):1003-14. PubMed ID: 9815148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells.
    Knisley SB; Blitchington TF; Hill BC; Grant AO; Smith WM; Pilkington TC; Ideker RE
    Circ Res; 1993 Feb; 72(2):255-70. PubMed ID: 8418982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks.
    DeBruin KA; Krassowska W
    Ann Biomed Eng; 1998; 26(4):584-96. PubMed ID: 9662151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface.
    Sharifov OF; Fast VG
    Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defibrillation shocks increase myocardial pacing threshold: an intracellular microelectrode study.
    Li HG; Jones DL; Yee R; Klein GJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1973-9. PubMed ID: 2058729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of shock-induced microscopic virtual electrodes assessed by subcellular resolution optical potential mapping in guinea pig papillary muscle.
    Windisch H; Platzer D; Bilgici E
    J Cardiovasc Electrophysiol; 2007 Sep; 18(10):1086-94. PubMed ID: 17655676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolongation of repolarization time by electric field stimulation with monophasic and biphasic shocks in open-chest dogs.
    Zhou XH; Knisley SB; Wolf PD; Rollins DL; Smith WM; Ideker RE
    Circ Res; 1991 Jun; 68(6):1761-7. PubMed ID: 2036724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of cardiac tissue by extracellular electrical shocks: formation of 'secondary sources' at intercellular clefts in monolayers of cultured myocytes.
    Fast VG; Rohr S; Gillis AM; Kléber AG
    Circ Res; 1998 Feb; 82(3):375-85. PubMed ID: 9486666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks.
    Clark DM; Pollard AE; Ideker RE; Knisley SB
    J Interv Card Electrophysiol; 1999 Jul; 3(2):109-20. PubMed ID: 10387137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode.
    Neunlist M; Tung L
    Pacing Clin Electrophysiol; 1994 Oct; 17(10):1641-54. PubMed ID: 7800567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of shock-induced changes in transmembrane potential on reentrant waves and outcome during cardioversion of isolated rabbit hearts.
    Evans FG; Ideker RE; Gray RA
    J Cardiovasc Electrophysiol; 2002 Nov; 13(11):1118-27. PubMed ID: 12475103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.