BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 7647981)

  • 41. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels.
    Fujimoto S; Itoh T
    Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid.
    Eckman DM; Hopkins N; McBride C; Keef KD
    Br J Pharmacol; 1998 May; 124(1):181-9. PubMed ID: 9630358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of endothelium- dependent relaxation in guinea pig basilar artery - effect of hypoxia and role of cytochrome P450 mono-oxygenase.
    Petersson J; Zygmunt PM; Jönsson P; Högestätt ED
    J Vasc Res; 1998; 35(4):285-94. PubMed ID: 9701713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery.
    Illiano S; Nagao T; Vanhoutte PM
    Br J Pharmacol; 1992 Oct; 107(2):387-92. PubMed ID: 1358391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization.
    Plane F; Sampson LJ; Smith JJ; Garland CJ
    Br J Pharmacol; 2001 Jul; 133(5):665-72. PubMed ID: 11429390
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries.
    Chataigneau T; Félétou M; Thollon C; Villeneuve N; Vilaine JP; Duhault J; Vanhoutte PM
    Br J Pharmacol; 1998 Mar; 123(5):968-74. PubMed ID: 9535027
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the depressant effect of the endothelium on contractions of rabbit isolated basilar artery to 5-hydroxytryptamine.
    Trezise DJ; Drew GM; Weston AH
    Br J Pharmacol; 1992 Jul; 106(3):587-92. PubMed ID: 1504743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries.
    Chaytor AT; Evans WH; Griffith TM
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles.
    McGuire JJ; Hollenberg MD; Andrade-Gordon P; Triggle CR
    Br J Pharmacol; 2002 Jan; 135(1):155-69. PubMed ID: 11786491
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries.
    Ferrer M; Encabo A; Conde MV; Marín J; Balfagón G
    J Vasc Res; 1995; 32(5):339-46. PubMed ID: 7578802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries.
    Sendão Oliveira AP; Bendhack LM
    Pharmacology; 2004 Dec; 72(4):231-9. PubMed ID: 15539883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries.
    Petersson J; Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1997 Apr; 120(7):1344-50. PubMed ID: 9105711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone.
    Azadzoi KM; Kim N; Brown ML; Goldstein I; Cohen RA; Saenz de Tejada I
    J Urol; 1992 Jan; 147(1):220-5. PubMed ID: 1370329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Wallerstedt SM; Bodelsson M
    Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries.
    Chaytor AT; Edwards DH; Bakker LM; Griffith TM
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15212-7. PubMed ID: 14645719
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.