BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7648198)

  • 1. Conversion of aldonic acids to their corresponding 2-keto-3-deoxy-analogs by the non-carbohydrate enzyme dihydroxy acid dehydratase (DHAD).
    Limberg G; Klaffke W; Thiem J
    Bioorg Med Chem; 1995 May; 3(5):487-94. PubMed ID: 7648198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus.
    Kim S; Lee SB
    J Biochem; 2006 Mar; 139(3):591-6. PubMed ID: 16567425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway.
    Kim S; Lee SB
    Biochem J; 2005 Apr; 387(Pt 1):271-80. PubMed ID: 15509194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pen and Pal are nucleotide-sugar dehydratases that convert UDP-GlcNAc to UDP-6-deoxy-D-GlcNAc-5,6-ene and then to UDP-4-keto-6-deoxy-L-AltNAc for CMP-pseudaminic acid synthesis in Bacillus thuringiensis.
    Li Z; Hwang S; Ericson J; Bowler K; Bar-Peled M
    J Biol Chem; 2015 Jan; 290(2):691-704. PubMed ID: 25414257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of a decarboxylating Agrobacterium tumefaciens keto-deoxy-d-galactarate dehydratase.
    Taberman H; Andberg M; Parkkinen T; Jänis J; Penttilä M; Hakulinen N; Koivula A; Rouvinen J
    Biochemistry; 2014 Dec; 53(51):8052-60. PubMed ID: 25454257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis of 2-keto-3-deoxy-d-gluconate by biocatalytic dehydration of d-gluconate.
    Matsubara K; Köhling R; Schönenberger B; Kouril T; Esser D; Bräsen C; Siebers B; Wohlgemuth R
    J Biotechnol; 2014 Dec; 191():69-77. PubMed ID: 25034432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals.
    Carsten JM; Schmidt A; Sieber V
    J Biotechnol; 2015 Oct; 211():31-41. PubMed ID: 26102631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attempts to develop an enzyme converting DHIV to KIV.
    Oki K; Lee FS; Mayo SL
    Protein Eng Des Sel; 2019 Dec; 32(6):261-270. PubMed ID: 31872250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases.
    Andberg M; Aro-Kärkkäinen N; Carlson P; Oja M; Bozonnet S; Toivari M; Hakulinen N; O'Donohue M; Penttilä M; Koivula A
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7549-63. PubMed ID: 27102126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of native dTDP-D-glucose-4,6-dehydratase: chemo-enzymatic syntheses of artificial and naturally occurring deoxy sugars.
    Naundorf A; Klaffke W
    Carbohydr Res; 1996 May; 285():141-50. PubMed ID: 9011374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of two new 5-keto-4-deoxy-D-Glucarate Dehydratases/Decarboxylases.
    Pick A; Beer B; Hemmi R; Momma R; Schmid J; Miyamoto K; Sieber V
    BMC Biotechnol; 2016 Nov; 16(1):80. PubMed ID: 27855668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of enzymatic activities in the enolase superfamily: L-talarate/galactarate dehydratase from Salmonella typhimurium LT2.
    Yew WS; Fedorov AA; Fedorov EV; Almo SC; Gerlt JA
    Biochemistry; 2007 Aug; 46(33):9564-77. PubMed ID: 17649980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Categorisation of sugar acid dehydratases in Aspergillus niger.
    Motter FA; Kuivanen J; Keränen H; Hilditch S; Penttilä M; Richard P
    Fungal Genet Biol; 2014 Mar; 64():67-72. PubMed ID: 24382357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of highly active 2-keto-3-deoxy-L-arabinonate and 2-keto-3-deoxy-D-xylonate dehydratases in terms of the biotransformation of hemicellulose sugars to chemicals.
    Sutiono S; Siebers B; Sieber V
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):7023-7035. PubMed ID: 32566996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16.
    Lu J; Brigham CJ; Plassmeier JK; Sinskey AJ
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):761-74. PubMed ID: 25081555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of enzymatic activities in the enolase superfamily: crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli.
    Gulick AM; Hubbard BK; Gerlt JA; Rayment I
    Biochemistry; 2000 Apr; 39(16):4590-602. PubMed ID: 10769114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway.
    Evans SE; Franks AE; Bergman ME; Sethna NS; Currie MA; Phillips MA
    Nat Commun; 2024 Feb; 15(1):1102. PubMed ID: 38321044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of enzymatic activities in the enolase superfamily: L-fuconate dehydratase from Xanthomonas campestris.
    Yew WS; Fedorov AA; Fedorov EV; Rakus JF; Pierce RW; Almo SC; Gerlt JA
    Biochemistry; 2006 Dec; 45(49):14582-97. PubMed ID: 17144652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli: effects of intracellular superoxide dismutase on its inactivation by oxidant stress.
    Brown OR; Smyk-Randall E; Draczynska-Lusiak B; Fee JA
    Arch Biochem Biophys; 1995 May; 319(1):10-22. PubMed ID: 7771772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway for D-galactonate catabolism in nonpathogenic mycobacteria.
    Szumiło T
    J Bacteriol; 1981 Oct; 148(1):368-70. PubMed ID: 7287628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.