These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7648223)

  • 1. Growth factor gene expression in tubular epithelial injury.
    Hammerman MR; Miller SB
    Curr Opin Nephrol Hypertens; 1995 May; 4(3):258-62. PubMed ID: 7648223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of growth hormone and insulin-like growth factor I on renal growth and function.
    Hammerman MR; Miller SB
    J Pediatr; 1997 Jul; 131(1 Pt 2):S17-9. PubMed ID: 9255221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic use of growth factors in renal failure.
    Hammerman MR; Miller SB
    J Am Soc Nephrol; 1994 Jul; 5(1):1-11. PubMed ID: 7948775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factors and apoptosis in acute renal injury.
    Hammerman MR
    Curr Opin Nephrol Hypertens; 1998 Jul; 7(4):419-24. PubMed ID: 9690042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of tubular cell proliferation by neutralizing endogenous HGF leads to renal hypoxia and bone marrow-derived cell engraftment in acute renal failure.
    Ohnishi H; Mizuno S; Nakamura T
    Am J Physiol Renal Physiol; 2008 Feb; 294(2):F326-35. PubMed ID: 18032545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of cell proliferation by clusterin in the renal tissue repair phase after ischemia-reperfusion injury.
    Nguan CY; Guan Q; Gleave ME; Du C
    Am J Physiol Renal Physiol; 2014 Apr; 306(7):F724-33. PubMed ID: 24477687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration.
    Tang Y; Huang XR; Lv J; Chung AC; Zhang Y; Chen JZ; Szalai AJ; Xu A; Lan HY
    Clin Sci (Lond); 2014 May; 126(9):645-59. PubMed ID: 24206243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in tubular cells.
    Poveda J; Sanz AB; Rayego-Mateos S; Ruiz-Ortega M; Carrasco S; Ortiz A; Sanchez-Niño MD
    Biochim Biophys Acta; 2016 Apr; 1862(4):635-646. PubMed ID: 26776679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of apoptosis regulatory proteins in tubular epithelium stressed in culture or following acute renal failure.
    Ortiz A; Lorz C; Catalán MP; Danoff TM; Yamasaki Y; Egido J; Neilson EG
    Kidney Int; 2000 Mar; 57(3):969-81. PubMed ID: 10720950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone lysine crotonylation during acute kidney injury in mice.
    Ruiz-Andres O; Sanchez-Niño MD; Cannata-Ortiz P; Ruiz-Ortega M; Egido J; Ortiz A; Sanz AB
    Dis Model Mech; 2016 Jun; 9(6):633-45. PubMed ID: 27125278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis.
    Zhang W; Shu L
    DNA Cell Biol; 2016 Aug; 35(8):417-25. PubMed ID: 27152763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between systemic inflammation and renal tubular epithelial cells.
    Cantaluppi V; Quercia AD; Dellepiane S; Ferrario S; Camussi G; Biancone L
    Nephrol Dial Transplant; 2014 Nov; 29(11):2004-11. PubMed ID: 24589723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue expression of tubular injury markers is associated with renal function decline in diabetic nephropathy.
    Hwang S; Park J; Kim J; Jang HR; Kwon GY; Huh W; Kim YG; Kim DJ; Oh HY; Lee JE
    J Diabetes Complications; 2017 Dec; 31(12):1704-1709. PubMed ID: 29037450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular nucleotides from dying cells act as molecular signals to promote wound repair in renal tubular injury.
    Nakagawa S; Omura T; Yonezawa A; Yano I; Nakagawa T; Matsubara K
    Am J Physiol Renal Physiol; 2014 Dec; 307(12):F1404-11. PubMed ID: 25354940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA repair in ischemic acute kidney injury.
    Pressly JD; Park F
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F551-F555. PubMed ID: 27927651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrin receptors in renal tubular epithelium: new insights into pathophysiology of acute renal failure.
    Goligorsky MS; Lieberthal W; Racusen L; Simon EE
    Am J Physiol; 1993 Jan; 264(1 Pt 2):F1-8. PubMed ID: 8430820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cells from foreign body granulation tissue accelerate recovery from acute kidney injury.
    Patel J; Pancholi N; Gudehithlu KP; Sethupathi P; Hart PD; Dunea G; Arruda JA; Singh AK
    Nephrol Dial Transplant; 2012 May; 27(5):1780-6. PubMed ID: 22036939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hypertrophy and hyperplasia of renal tubular interstitial cells--regulatory factors].
    Kanetake H; Igawa T; Kanda S; Saito Y
    Nihon Rinsho; 1995 Aug; 53(8):1894-9. PubMed ID: 7563625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiology of ischaemic acute renal failure.
    Lameire NH; Vanholder R
    Best Pract Res Clin Anaesthesiol; 2004 Mar; 18(1):21-36. PubMed ID: 14760872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury.
    Ranghino A; Bruno S; Bussolati B; Moggio A; Dimuccio V; Tapparo M; Biancone L; Gontero P; Frea B; Camussi G
    Stem Cell Res Ther; 2017 Feb; 8(1):24. PubMed ID: 28173878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.