These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7648322)

  • 1. Potential energy functions.
    Halgren TA
    Curr Opin Struct Biol; 1995 Apr; 5(2):205-10. PubMed ID: 7648322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical force fields for biological macromolecules: overview and issues.
    Mackerell AD
    J Comput Chem; 2004 Oct; 25(13):1584-604. PubMed ID: 15264253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions.
    Wang W; Donini O; Reyes CM; Kollman PA
    Annu Rev Biophys Biomol Struct; 2001; 30():211-43. PubMed ID: 11340059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields.
    Hassan SA
    J Chem Phys; 2012 Aug; 137(7):074102. PubMed ID: 22920098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM: the biomolecular simulation program.
    Brooks BR; Brooks CL; Mackerell AD; Nilsson L; Petrella RJ; Roux B; Won Y; Archontis G; Bartels C; Boresch S; Caflisch A; Caves L; Cui Q; Dinner AR; Feig M; Fischer S; Gao J; Hodoscek M; Im W; Kuczera K; Lazaridis T; Ma J; Ovchinnikov V; Paci E; Pastor RW; Post CB; Pu JZ; Schaefer M; Tidor B; Venable RM; Woodcock HL; Wu X; Yang W; York DM; Karplus M
    J Comput Chem; 2009 Jul; 30(10):1545-614. PubMed ID: 19444816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments in force fields for biomolecular simulations.
    Nerenberg PS; Head-Gordon T
    Curr Opin Struct Biol; 2018 Apr; 49():129-138. PubMed ID: 29477047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in biomolecular simulations: methodology and recent applications.
    Norberg J; Nilsson L
    Q Rev Biophys; 2003 Aug; 36(3):257-306. PubMed ID: 15029826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of protein force fields for molecular dynamics simulations.
    Guvench O; MacKerell AD
    Methods Mol Biol; 2008; 443():63-88. PubMed ID: 18446282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of the molecular dynamics of nucleic acids.
    Auffinger P; Westhof E
    Curr Opin Struct Biol; 1998 Apr; 8(2):227-36. PubMed ID: 9631298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force field parameters for rotation around chi torsion axis in nucleic acids.
    Ode H; Matsuo Y; Neya S; Hoshino T
    J Comput Chem; 2008 Nov; 29(15):2531-42. PubMed ID: 18470965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring biomolecular energy landscapes.
    Joseph JA; Röder K; Chakraborty D; Mantell RG; Wales DJ
    Chem Commun (Camb); 2017 Jun; 53(52):6974-6988. PubMed ID: 28489083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Amber biomolecular simulation programs.
    Case DA; Cheatham TE; Darden T; Gohlke H; Luo R; Merz KM; Onufriev A; Simmerling C; Wang B; Woods RJ
    J Comput Chem; 2005 Dec; 26(16):1668-88. PubMed ID: 16200636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Links between the charge model and bonded parameter force constants in biomolecular force fields.
    Cerutti DS; Debiec KT; Case DA; Chong LT
    J Chem Phys; 2017 Oct; 147(16):161730. PubMed ID: 29096508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems.
    Jorgensen WL; Tirado-Rives J
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6665-70. PubMed ID: 15870211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules.
    Hua S; Hua W; Li S
    J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.
    Kurnikov IV; Kurnikova M
    J Phys Chem B; 2015 Aug; 119(32):10275-86. PubMed ID: 26109375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical electrostatics in biology and chemistry.
    Honig B; Nicholls A
    Science; 1995 May; 268(5214):1144-9. PubMed ID: 7761829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mirror symmetry breaking and restoration: the role of noise and chiral bias.
    Hochberg D
    Phys Rev Lett; 2009 Jun; 102(24):248101. PubMed ID: 19659050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.