These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7648616)

  • 1. Regional brain glutamate transport in rats at normal and raised concentrations of circulating glutamate.
    Hawkins RA; DeJoseph MR; Hawkins PA
    Cell Tissue Res; 1995 Aug; 281(2):207-14. PubMed ID: 7648616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration of glutamate into brain of 7-day-old rats.
    ViƱa JR; DeJoseph MR; Hawkins PA; Hawkins RA
    Metab Brain Dis; 1997 Sep; 12(3):219-27. PubMed ID: 9346470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blood-brain barrier and glutamate.
    Hawkins RA
    Am J Clin Nutr; 2009 Sep; 90(3):867S-874S. PubMed ID: 19571220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased brain uptake and CSF clearance of 14C-glutamate in spontaneously hypertensive rats.
    Al-Sarraf H; Philip L
    Brain Res; 2003 Dec; 994(2):181-7. PubMed ID: 14642643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in rat: a biochemical and autoradiographic study.
    Vitte PA; Harthe C; Lestage P; Claustrat B; Bobillier P
    J Pineal Res; 1988; 5(5):437-53. PubMed ID: 3171890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of essential nutrients across the blood-brain barrier of individual structures.
    Hawkins RA
    Fed Proc; 1986 Jun; 45(7):2055-9. PubMed ID: 3519289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of chronic serum sickness on albumin distribution and glucose utilization in rat brain.
    Nakata H; Shimizu A; Tajima A; Lin SZ; Gruber K; Perillo E; Peress N; Fenstermacher J
    Acta Neuropathol; 1991; 81(3):312-7. PubMed ID: 2058367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin-like growth factors cross the blood-brain barrier.
    Reinhardt RR; Bondy CA
    Endocrinology; 1994 Nov; 135(5):1753-61. PubMed ID: 7525251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of [3H]methylglucose and [14C]iodoantipyrine to determine kinetic parameters of glucose transport in rat brain.
    Mori K; Maeda M
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R163-71. PubMed ID: 9039005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoradiographic localization of [14C]8-S-adenosyl-L-homocysteine in rat brain.
    Gharib A; Sarda N; Bobillier P; Pacheco H
    Neurosci Lett; 1984 Feb; 44(2):205-9. PubMed ID: 6709235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood-brain exchange routes and distribution of 65Zn in rat brain.
    Franklin PA; Pullen RG; Hall GH
    Neurochem Res; 1992 Aug; 17(8):767-71. PubMed ID: 1641058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional blood-brain barrier transport of cationized bovine serum albumin in awake rats.
    Shimon-Hophy M; Wadhwani KC; Chandrasekaran K; Larson D; Smith QR; Rapoport SI
    Am J Physiol; 1991 Aug; 261(2 Pt 2):R478-83. PubMed ID: 1877704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Film autoradiography identifies unique features of [125I]3,3'5'-(reverse) triiodothyronine transport from blood to brain.
    Cheng LY; Outterbridge LV; Covatta ND; Martens DA; Gordon JT; Dratman MB
    J Neurophysiol; 1994 Jul; 72(1):380-91. PubMed ID: 7965021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability of a capsaicin derivative, [14C]DA-5018 to blood-brain barrier corrected with HPLC method.
    Kang YS; Kim JM
    Arch Pharm Res; 1999 Apr; 22(2):165-72. PubMed ID: 10230507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat.
    Ghersi-Egea JF; Finnegan W; Chen JL; Fenstermacher JD
    Neuroscience; 1996 Dec; 75(4):1271-88. PubMed ID: 8938759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of glutamate and other amino acids at the blood-brain barrier.
    Smith QR
    J Nutr; 2000 Apr; 130(4S Suppl):1016S-22S. PubMed ID: 10736373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier.
    Garcia MA; Carrasco M; Godoy A; Reinicke K; Montecinos VP; Aguayo LG; Tapia JC; Vera JC; Nualart F
    J Cell Biochem; 2001; 80(4):491-503. PubMed ID: 11169733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury.
    Popovich PG; Horner PJ; Mullin BB; Stokes BT
    Exp Neurol; 1996 Dec; 142(2):258-75. PubMed ID: 8934558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.
    Helms HC; Madelung R; Waagepetersen HS; Nielsen CU; Brodin B
    Glia; 2012 May; 60(6):882-93. PubMed ID: 22392649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective blood-tumor barrier disruption by leukotrienes.
    Chio CC; Baba T; Black KL
    J Neurosurg; 1992 Sep; 77(3):407-10. PubMed ID: 1506887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.