BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7649441)

  • 1. NAD(+)-glycohydrolase from Streptococcus pyogenes shows cyclic ADP-ribose forming activity.
    Karasawa T; Takasawa S; Yamakawa K; Yonekura H; Okamoto H; Nakamura S
    FEMS Microbiol Lett; 1995 Aug; 130(2-3):201-4. PubMed ID: 7649441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases.
    Kim H; Jacobson EL; Jacobson MK
    Science; 1993 Sep; 261(5126):1330-3. PubMed ID: 8395705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism.
    Matsumura N; Tanuma S
    Biochem Biophys Res Commun; 1998 Dec; 253(2):246-52. PubMed ID: 9878523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of bovine spleen NAD+ glycohydrolase in the metabolism of cyclic ADP-ribose-mechanism of the cyclization reaction.
    Muller-Steffner H; Augustin A; Schuber F
    Adv Exp Med Biol; 1997; 419():399-409. PubMed ID: 9193682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase.
    Muller-Steffner H; Muzard M; Oppenheimer N; Schuber F
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1279-85. PubMed ID: 7980606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Streptococcus pyogenes beta-NAD+ glycohydrolase: re-evaluation of enzymatic properties associated with pathogenesis.
    Ghosh J; Anderson PJ; Chandrasekaran S; Caparon MG
    J Biol Chem; 2010 Feb; 285(8):5683-94. PubMed ID: 20018886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase.
    Muller-Steffner HM; Augustin A; Schuber F
    J Biol Chem; 1996 Sep; 271(39):23967-72. PubMed ID: 8798630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of cyclic ADP-ribose formation in heart muscle.
    Mészáros V; Socci R; Mészáros LG
    Biochem Biophys Res Commun; 1995 May; 210(2):452-6. PubMed ID: 7755621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cADPR-Hydrolase by ADP-ribose potentiates cADPR synthesis from beta-NAD+.
    Genazzani AA; Bak J; Galione A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):502-7. PubMed ID: 8687425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD glycohydrolases and the metabolism of cyclic ADP-ribose.
    Jacobson MK; Cervantes-Laurean D; Strohm MS; Coyle DL; Bummer PM; Jacobson EL
    Biochimie; 1995; 77(5):341-4. PubMed ID: 8527487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular ADP-ribose transfer reactions and calcium signalling. Potential role of 2'-phospho-cyclic ADP-ribose in oxidative stress.
    Vu CQ; Coyle DL; Tai HH; Jacobson EL; Jacobson MK
    Adv Exp Med Biol; 1997; 419():381-8. PubMed ID: 9193680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5'-diphosphate ribose-mediated Ca2+ release.
    Ashamu GA; Sethi JK; Galione A; Potter BV
    Biochemistry; 1997 Aug; 36(31):9509-17. PubMed ID: 9235996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP.
    Lee HC
    Biol Chem; 1999; 380(7-8):785-93. PubMed ID: 10494827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo.
    Partida-Sánchez S; Cockayne DA; Monard S; Jacobson EL; Oppenheimer N; Garvy B; Kusser K; Goodrich S; Howard M; Harmsen A; Randall TD; Lund FE
    Nat Med; 2001 Nov; 7(11):1209-16. PubMed ID: 11689885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of polymorphic residues reveals distinct enzymatic and cytotoxic activities of the Streptococcus pyogenes NAD+ glycohydrolase.
    Chandrasekaran S; Ghosh J; Port GC; Koh EI; Caparon MG
    J Biol Chem; 2013 Jul; 288(27):20064-75. PubMed ID: 23689507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP.
    Lee HC
    Physiol Rev; 1997 Oct; 77(4):1133-64. PubMed ID: 9354813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release.
    Chandrasekaran S; Caparon MG
    Cell Microbiol; 2015 Sep; 17(9):1376-90. PubMed ID: 25818652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bovine liver mitochondrial NAD+ glycohydrolase. Relationship to ADP-ribosylation and calcium fluxes.
    Ziegler M; Jorcke D; Herrero-Yraola A; Schweiger M
    Adv Exp Med Biol; 1997; 419():443-6. PubMed ID: 9193687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP ribosyl cyclase activity in rat parotid acinar cells.
    Looms D; Nauntofte B; Dissing S
    Eur J Morphol; 1998 Aug; 36 Suppl():181-5. PubMed ID: 9825918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.