These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 7650875)
1. Stimulation of cyclic AMP formation by pituitary adenylate cyclase-activating polypeptide is attenuated by glutamate in rat brain slices. Kondo K; Hashimoto H; Sakata K; Saga H; Kitanaka J; Baba A Jpn J Pharmacol; 1995 Apr; 67(4):399-401. PubMed ID: 7650875 [TBL] [Abstract][Full Text] [Related]
2. Effects of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on cyclic AMP accumulation in sheep pituitary cells in vitro. Sawangjaroen K; Sernia C; Curlewis JD J Endocrinol; 1996 Mar; 148(3):545-52. PubMed ID: 8778233 [TBL] [Abstract][Full Text] [Related]
3. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylyl cyclase and phospholipase C activity in rat cerebellar neuroblasts. Basille M; Gonzalez BJ; Desrues L; Demas M; Fournier A; Vaudry H J Neurochem; 1995 Sep; 65(3):1318-24. PubMed ID: 7643109 [TBL] [Abstract][Full Text] [Related]
4. Interactions of ovarian steroids with pituitary adenylate cyclase-activating polypeptide and GnRH in anterior pituitary cells. Ortmann O; Asmus W; Diedrich K; Schulz KD; Emons G Eur J Endocrinol; 1999 Mar; 140(3):207-14. PubMed ID: 10216515 [TBL] [Abstract][Full Text] [Related]
5. Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: signal transduction involves cAMP- and calcium-dependent mechanisms. Xiao D; Chu MM; Lee EK; Lin HR; Wong AO Neuroendocrinology; 2002 Nov; 76(5):325-38. PubMed ID: 12457043 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the presence of receptors for pituitary adenylate cyclase-activating polypeptide in the neurohypophysis that are positively coupled to cyclic AMP formation and neurohypophyseal hormone secretion. Lutz-Bucher B; Monnier D; Koch B Neuroendocrinology; 1996 Aug; 64(2):153-61. PubMed ID: 8857610 [TBL] [Abstract][Full Text] [Related]
7. Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Vaudry D; Gonzalez BJ; Basille M; Anouar Y; Fournier A; Vaudry H Neuroscience; 1998 Jun; 84(3):801-12. PubMed ID: 9579785 [TBL] [Abstract][Full Text] [Related]
8. Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Costa L; Santangelo F; Li Volsi G; Ciranna L Hippocampus; 2009 Jan; 19(1):99-109. PubMed ID: 18727050 [TBL] [Abstract][Full Text] [Related]
10. Localization and characterization of PACAP receptors in the rat cerebellum during development: evidence for a stimulatory effect of PACAP on immature cerebellar granule cells. Basille M; Gonzalez BJ; Leroux P; Jeandel L; Fournier A; Vaudry H Neuroscience; 1993 Nov; 57(2):329-38. PubMed ID: 8115042 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional and posttranscriptional control of tyrosine hydroxylase gene expression during persistent stimulation of pituitary adenylate cyclase-activating polypeptide receptors on PC12 cells: regulation by protein kinase A-dependent and protein kinase A-independent pathways. Corbitt J; Vivekananda J; Wang SS; Strong R J Neurochem; 1998 Aug; 71(2):478-86. PubMed ID: 9681437 [TBL] [Abstract][Full Text] [Related]
12. GABA(B) receptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. Olianas MC; Onali P Br J Pharmacol; 1999 Feb; 126(3):657-64. PubMed ID: 10188976 [TBL] [Abstract][Full Text] [Related]
13. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic AMP formation in the duck and goose brain. Nowak JZ; Kuba K; Zawilska JB Acta Neurobiol Exp (Wars); 2000; 60(2):209-14. PubMed ID: 10909177 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. II: Effects of the pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide. Aoki Y; Iwasaki Y; Katahira M; Oiso Y; Saito H Endocrinology; 1997 May; 138(5):1930-4. PubMed ID: 9112389 [TBL] [Abstract][Full Text] [Related]
15. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic AMP formation in the hypothalamus and cerebral cortex of four avians and rat. Nowak JZ; Kuba K; Zawilska JB Pol J Pharmacol; 1999; 51(1):87-91. PubMed ID: 10389149 [TBL] [Abstract][Full Text] [Related]
16. Pituitary adenylate cyclase-activating polypeptide potentiation of Ca2+ entry via protein kinase C and A pathways in melanotrophs of the pituitary pars intermedia of rats. Tanaka K; Shibuya I; Harayama N; Nomura M; Kabashima N; Ueta Y; Yamashita H Endocrinology; 1997 Oct; 138(10):4086-95. PubMed ID: 9322916 [TBL] [Abstract][Full Text] [Related]
17. Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes. Vandermeers A; Vandenborre S; Hou X; de Neef P; Robberecht P; Vandermeers-Piret MC; Christophe J Eur J Biochem; 1992 Sep; 208(3):815-9. PubMed ID: 1327769 [TBL] [Abstract][Full Text] [Related]