These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 7651130)
1. Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli. Notley L; Ferenci T Mol Microbiol; 1995 Apr; 16(1):121-9. PubMed ID: 7651130 [TBL] [Abstract][Full Text] [Related]
2. H-NS and StpA proteins stimulate expression of the maltose regulon in Escherichia coli. Johansson J; Dagberg B; Richet E; Uhlin BE J Bacteriol; 1998 Dec; 180(23):6117-25. PubMed ID: 9829919 [TBL] [Abstract][Full Text] [Related]
3. External-pH-dependent expression of the maltose regulon and ompF gene in Escherichia coli is affected by the level of glycerol kinase, encoded by glpK. Chagneau C; Heyde M; Alonso S; Portalier R; Laloi P J Bacteriol; 2001 Oct; 183(19):5675-83. PubMed ID: 11544231 [TBL] [Abstract][Full Text] [Related]
4. Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli? Notley L; Ferenci T J Bacteriol; 1996 Mar; 178(5):1465-8. PubMed ID: 8631726 [TBL] [Abstract][Full Text] [Related]
5. Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. Lange R; Barth M; Hengge-Aronis R J Bacteriol; 1993 Dec; 175(24):7910-7. PubMed ID: 8253679 [TBL] [Abstract][Full Text] [Related]
6. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP. Ferenci T FEMS Microbiol Rev; 1996 Jul; 18(4):301-17. PubMed ID: 8703508 [TBL] [Abstract][Full Text] [Related]
7. Network regulation of the Escherichia coli maltose system. Schlegel A; Böhm A; Lee SJ; Peist R; Decker K; Boos W J Mol Microbiol Biotechnol; 2002 May; 4(3):301-7. PubMed ID: 11931562 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the effect exerted by extracellular pH on the maltose regulon in Escherichia coli K-12. Alonzo S; Heyde M; Laloi P; Portalier R Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3317-3325. PubMed ID: 9884223 [TBL] [Abstract][Full Text] [Related]
9. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
10. Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Decker K; Plumbridge J; Boos W Mol Microbiol; 1998 Jan; 27(2):381-90. PubMed ID: 9484893 [TBL] [Abstract][Full Text] [Related]
11. The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Panagiotidis CH; Boos W; Shuman HA Mol Microbiol; 1998 Nov; 30(3):535-46. PubMed ID: 9822819 [TBL] [Abstract][Full Text] [Related]
12. The role of the trehalose system in regulating the maltose regulon of Escherichia coli. Decker K; Gerhardt F; Boos W Mol Microbiol; 1999 May; 32(4):777-88. PubMed ID: 10361281 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of stationary phase-inducible genes in Escherichia coli. Weichart D; Lange R; Henneberg N; Hengge-Aronis R Mol Microbiol; 1993 Oct; 10(2):407-20. PubMed ID: 7934831 [TBL] [Abstract][Full Text] [Related]
14. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. Death A; Ferenci T J Bacteriol; 1994 Aug; 176(16):5101-7. PubMed ID: 8051023 [TBL] [Abstract][Full Text] [Related]
15. Role of the catabolite activator protein in the maltose regulon of Escherichia coli. Chapon C J Bacteriol; 1982 May; 150(2):722-9. PubMed ID: 7040340 [TBL] [Abstract][Full Text] [Related]
16. The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. Dippel R; Bergmiller T; Böhm A; Boos W J Bacteriol; 2005 Dec; 187(24):8332-9. PubMed ID: 16321937 [TBL] [Abstract][Full Text] [Related]
17. Maltotriose is the inducer of the maltose regulon of Escherichia coli. Raibaud O; Richet E J Bacteriol; 1987 Jul; 169(7):3059-61. PubMed ID: 3298211 [TBL] [Abstract][Full Text] [Related]
18. The multifactorial influences of RpoS, Mlc and cAMP on ptsG expression under glucose-limited and anaerobic conditions. Seeto S; Notley-McRobb L; Ferenci T Res Microbiol; 2004 Apr; 155(3):211-5. PubMed ID: 15059634 [TBL] [Abstract][Full Text] [Related]
19. Characterization of malT mutants that constitutively activate the maltose regulon of Escherichia coli. Dardonville B; Raibaud O J Bacteriol; 1990 Apr; 172(4):1846-52. PubMed ID: 2180908 [TBL] [Abstract][Full Text] [Related]
20. Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability. Mandel MJ; Silhavy TJ J Bacteriol; 2005 Jan; 187(2):434-42. PubMed ID: 15629914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]