BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7651214)

  • 1. ATP synthesis and ATPase activities in heart mitoplasts under influence of R- and S-enantiomers of lipoic acid.
    Zimmer G; Mainka L; Ulrich H
    Methods Enzymol; 1995; 251():332-40. PubMed ID: 7651214
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.
    Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ
    Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase.
    Solaini G; Tadolini B
    Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose/response curves of lipoic acid R-and S-forms in the working rat heart during reoxygenation: superiority of the R-enantiomer in enhancement of aortic flow.
    Zimmer G; Beikler TK; Schneider M; Ibel J; Tritschler H; Ulrich H
    J Mol Cell Cardiol; 1995 Sep; 27(9):1895-903. PubMed ID: 8523450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139
    [No Abstract]   [Full Text] [Related]  

  • 7. Demonstration and quantitation of catalytic and noncatalytic bound ATP in submitochondrial particles during oxidative phosphorylation.
    Gresser M; Cardon J; Rosen G; Boyer PD
    J Biol Chem; 1979 Nov; 254(21):10649-53. PubMed ID: 159294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.
    Zimmer G; Mainka L; Krüger E
    Arch Biochem Biophys; 1991 Aug; 288(2):609-13. PubMed ID: 1832845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of beef heart submitochondrial particle-catalyzed Pi goes to and comes from ATP exchange by nucleotides and the ATPase inhibitor protein.
    Krull KW; Schuster SM
    J Biol Chem; 1981 Jul; 256(13):6641-5. PubMed ID: 6453869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the membrane potential on the rate of ATP hydrolysis in submitochondrial particles].
    Gladysheva TB; Kozlov IA; Khodzhaev EIu; Cherniak BV
    Dokl Akad Nauk SSSR; 1984; 276(4):980-3. PubMed ID: 6236064
    [No Abstract]   [Full Text] [Related]  

  • 11. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force.
    Sorgato MC; Branca D; Ferguson SJ
    Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1.
    Minkov IB; Fitin AF; Vasilyeva EA; Vinogradov AD
    Biochem Biophys Res Commun; 1979 Aug; 89(4):1300-6. PubMed ID: 159048
    [No Abstract]   [Full Text] [Related]  

  • 13. Unisite and multisite ATP hydrolysis and synthesis by bovine submitochondrial particles.
    Hatefi Y; Matsuno-Yagi A
    Ann N Y Acad Sci; 1992 Nov; 671():377-84; discussion 385. PubMed ID: 1288334
    [No Abstract]   [Full Text] [Related]  

  • 14. Artefacts in the estimation of ADP analogs as phosphate acceptors in mitochondrial oxidative phosphorylation.
    Petrescu I; Lascu I; Porumb H; Bàrzu O
    FEBS Lett; 1981 Mar; 125(1):111-4. PubMed ID: 7227536
    [No Abstract]   [Full Text] [Related]  

  • 15. Unmasking cooperativity of oxidative phosphorylation by a new alpha-phosphate acylated ADP-analog.
    Schäfer G; Onur G
    FEBS Lett; 1980 Aug; 117(1):269-72. PubMed ID: 7409173
    [No Abstract]   [Full Text] [Related]  

  • 16. The energy-dependent unmasking of -SH groups in the mitochondrial ADP/ATP carrier, and its prevention by nigericin.
    Michejda J; Vignais PV
    FEBS Lett; 1981 Sep; 132(1):129-32. PubMed ID: 6271581
    [No Abstract]   [Full Text] [Related]  

  • 17. An inhibitory high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitochondrial particles.
    Fitin AF; Vasilyeva EA; Vinogradov AD
    Biochem Biophys Res Commun; 1979 Jan; 86(2):434-9. PubMed ID: 154889
    [No Abstract]   [Full Text] [Related]  

  • 18. The control of uncoupler-activated ATPase activity in rat liver mitochondria by adenine nucleotide transport. The effect of glucagon treatment.
    Titheradge MA; Haynes RC
    J Biol Chem; 1980 Feb; 255(4):1471-7. PubMed ID: 6444411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical response of beef-heart submitochondrial particles bound to phospholipid-impregnated millipore filters during ATP hydrolysis.
    Pfister C; Pougeois R
    Biochim Biophys Acta; 1980 Feb; 589(2):201-16. PubMed ID: 6444522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.