These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 7651408)

  • 1. A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant.
    Halladay JT; Craig EA
    Mol Cell Biol; 1995 Sep; 15(9):4890-7. PubMed ID: 7651408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of an Hsp70 mutant phenotype in Saccharomyces cerevisiae through loss of function of the chromatin component Sin1p/Spt2p.
    Baxter BK; Craig EA
    J Bacteriol; 1998 Dec; 180(24):6484-92. PubMed ID: 9851990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of extragenic suppressors of mutations in the SSA hsp70 genes of Saccharomyces cerevisiae.
    Nelson RJ; Heschl MF; Craig EA
    Genetics; 1992 Jun; 131(2):277-85. PubMed ID: 1644272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes.
    Lopez N; Halladay J; Walter W; Craig EA
    J Bacteriol; 1999 May; 181(10):3136-43. PubMed ID: 10322015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae.
    Werner-Washburne M; Stone DE; Craig EA
    Mol Cell Biol; 1987 Jul; 7(7):2568-77. PubMed ID: 3302682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins.
    Hjorth-Sørensen B; Hoffmann ER; Lissin NM; Sewell AK; Jakobsen BK
    Mol Microbiol; 2001 Feb; 39(4):914-23. PubMed ID: 11251812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [URE3] prion propagation is abolished by a mutation of the primary cytosolic Hsp70 of budding yeast.
    Roberts BT; Moriyama H; Wickner RB
    Yeast; 2004 Jan; 21(2):107-17. PubMed ID: 14755636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae.
    Matsumoto R; Akama K; Rakwal R; Iwahashi H
    BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct.
    Young MR; Craig EA
    Mol Cell Biol; 1993 Sep; 13(9):5637-46. PubMed ID: 8355706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development.
    Gagliardi D; Breton C; Chaboud A; Vergne P; Dumas C
    Plant Mol Biol; 1995 Nov; 29(4):841-56. PubMed ID: 8541509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity.
    Hasin N; Cusack SA; Ali SS; Fitzpatrick DA; Jones GW
    BMC Genomics; 2014 Mar; 15(1):194. PubMed ID: 24628813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of UBP3, encoding a de-ubiquitinating enzyme, as a multicopy suppressor of a heat-shock mutant strain of S. cerevisiae.
    Baxter BK; Craig EA
    Curr Genet; 1998 Jun; 33(6):412-9. PubMed ID: 9644204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of an alpha-helical bulge in the yeast heat shock transcription factor.
    Hardy JA; Walsh ST; Nelson HC
    J Mol Biol; 2000 Jan; 295(3):393-409. PubMed ID: 10623534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation.
    Vogel JL; Parsell DA; Lindquist S
    Curr Biol; 1995 Mar; 5(3):306-17. PubMed ID: 7780741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation.
    Sorger PK; Pelham HR
    Cell; 1988 Sep; 54(6):855-64. PubMed ID: 3044613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock transcription factor activates transcription of the yeast metallothionein gene.
    Silar P; Butler G; Thiele DJ
    Mol Cell Biol; 1991 Mar; 11(3):1232-8. PubMed ID: 1996089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.