BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 7651516)

  • 1. Improving enzyme-electrode contacts by redox modification of cofactors.
    Riklin A; Katz E; Willner I; Stocker A; Bückmann AF
    Nature; 1995 Aug; 376(6542):672-5. PubMed ID: 7651516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle.
    Xiao Y; Patolsky F; Katz E; Hainfeld JF; Willner I
    Science; 2003 Mar; 299(5614):1877-81. PubMed ID: 12649477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of bioelectrocatalytic transformations on DNA scaffolds.
    Piperberg G; Wilner OI; Yehezkeli O; Tel-Vered R; Willner I
    J Am Chem Soc; 2009 Jul; 131(25):8724-5. PubMed ID: 19505077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.
    Kavanagh P; Leech D
    Anal Chem; 2006 Apr; 78(8):2710-6. PubMed ID: 16615783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking the barrier to fast electron transfer.
    Demin S; Hall EA
    Bioelectrochemistry; 2009 Sep; 76(1-2):19-27. PubMed ID: 19351583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels.
    Mao F; Mano N; Heller A
    J Am Chem Soc; 2003 Apr; 125(16):4951-7. PubMed ID: 12696915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.
    Cortez ML; Marmisollé W; Pallarola D; Pietrasanta LI; Murgida DH; Ceolín M; Azzaroni O; Battaglini F
    Chemistry; 2014 Oct; 20(41):13366-74. PubMed ID: 25171096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured materials based on the integration of ferrocenyl-tethered dendrimer and redox proteins on self-assembled monolayers: an efficient biosensor interface.
    Frasconi M; Deriu D; D'Annibale A; Mazzei F
    Nanotechnology; 2009 Dec; 20(50):505501. PubMed ID: 19907072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems.
    Yehezkeli O; Yan YM; Baravik I; Tel-Vered R; Willner I
    Chemistry; 2009 Mar; 15(11):2674-9. PubMed ID: 19180594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical catalysis with redox polymer and polyion-protein films.
    Rusling JF; Forster RJ
    J Colloid Interface Sci; 2003 Jun; 262(1):1-15. PubMed ID: 16256574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme activity control by responsive redoxpolymers.
    Nagel B; Warsinke A; Katterle M
    Langmuir; 2007 Jun; 23(12):6807-11. PubMed ID: 17472404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites.
    Baravik I; Tel-Vered R; Ovits O; Willner I
    Langmuir; 2009 Dec; 25(24):13978-83. PubMed ID: 19673510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-triggered FTIR difference spectra of FAD in aqueous solution and bound to flavoproteins.
    Wille G; Ritter M; Friedemann R; Mäntele W; Hübner G
    Biochemistry; 2003 Dec; 42(50):14814-21. PubMed ID: 14674755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes.
    Simonov AN; Grosse W; Mashkina EA; Bethwaite B; Tan J; Abramson D; Wallace GG; Moulton SE; Bond AM
    Langmuir; 2014 Mar; 30(11):3264-73. PubMed ID: 24571209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical contacting of glucose oxidase in a redox-active rotaxane configuration.
    Katz E; Sheeney-Haj-Ichia L; Willner I
    Angew Chem Int Ed Engl; 2004 Jun; 43(25):3292-300. PubMed ID: 15213957
    [No Abstract]   [Full Text] [Related]  

  • 19. Polyazetidine-based immobilization of redox proteins for electron-transfer-based biosensors.
    Frasconi M; Favero G; Di Fusco M; Mazzei F
    Biosens Bioelectron; 2009 Jan; 24(5):1424-30. PubMed ID: 18829298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular architectures of electrostatic self-assembled glucose oxidase enzyme electrodes.
    Calvo EJ; Wolosiuk A
    Chemphyschem; 2004 Feb; 5(2):235-9. PubMed ID: 15038285
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.