BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7651735)

  • 1. Loss of heterozygosity of imprinted genes in SV40 t/T antigen-induced hepatocellular carcinomas.
    Casola S; Ungaro P; Pedone PV; Lazzaro D; Fattori E; Ciliberto G; Zarrilli R; Bruni CB; Riccio A
    Oncogene; 1995 Aug; 11(4):711-21. PubMed ID: 7651735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic imprinting and Igf2 influence liver tumorigenesis and loss of heterozygosity in SV40 T antigen transgenic mice.
    Haddad R; Held WA
    Cancer Res; 1997 Oct; 57(20):4615-23. PubMed ID: 9377577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in specific gene expression and focal neoplastic growth during spontaneous hepatocarcinogenesis in albumin-SV40 T antigen transgenic rats.
    Dragan YP; Sargent LM; Babcock K; Kinunen N; Pitot HC
    Mol Carcinog; 2004 Jul; 40(3):150-9. PubMed ID: 15224347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biallelic expression of the H19 gene during spontaneous hepatocarcinogenesis in the albumin SV40 T antigen transgenic rat.
    Manoharan H; Babcock K; Willi J; Pitot HC
    Mol Carcinog; 2003 Sep; 38(1):40-7. PubMed ID: 12949842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the DNA methylation profile of the rat H19 gene upstream region during development and transgenic hepatocarcinogenesis and its role in the imprinted transcriptional regulation of the H19 gene.
    Manoharan H; Babcock K; Pitot HC
    Mol Carcinog; 2004 Sep; 41(1):1-16. PubMed ID: 15352122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatocellular carcinomas of the albumin SV40 T-antigen transgenic rat display fetal-like re-expression of lgf2 and deregulation of H19.
    Czarny MJ; Babcock K; Baus RM; Manoharan H; Pitot HC
    Mol Carcinog; 2007 Sep; 46(9):747-57. PubMed ID: 17393425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of liver tumorigenesis in SV40 T antigen transgenic mice implies a role for imprinted genes.
    Held WA; Pazik J; O'Brien JG; Kerns K; Gobey M; Meis R; Kenny L; Rustum Y
    Cancer Res; 1994 Dec; 54(24):6489-95. PubMed ID: 7987847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivation of the maternally imprinted IGF2 allele in TGFalpha induced hepatocellular carcinomas in mice.
    Harris TM; Rogler LE; Rogler CE
    Oncogene; 1998 Jan; 16(2):203-9. PubMed ID: 9464538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model.
    Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM
    Cancer Res; 1999 May; 59(9):2203-9. PubMed ID: 10232609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintenance of genomic imprinting at the IGF2 locus in hepatoblastoma.
    Davies SM
    Cancer Res; 1993 Oct; 53(20):4781-3. PubMed ID: 8402661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans.
    Kalscheuer VM; Mariman EC; Schepens MT; Rehder H; Ropers HH
    Nat Genet; 1993 Sep; 5(1):74-8. PubMed ID: 8220428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2.
    Zemel S; Bartolomei MS; Tilghman SM
    Nat Genet; 1992 Sep; 2(1):61-5. PubMed ID: 1303252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental regulation of genomic imprinting during gametogenesis.
    Villar AJ; Eddy EM; Pedersen RA
    Dev Biol; 1995 Nov; 172(1):264-71. PubMed ID: 7589806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The H19 endodermal enhancer is required for Igf2 activation and tumor formation in experimental liver carcinogenesis.
    Vernucci M; Cerrato F; Besnard N; Casola S; Pedone PV; Bruni CB; Riccio A
    Oncogene; 2000 Dec; 19(54):6376-85. PubMed ID: 11175353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parental-origin-specific epigenetic modification of the mouse H19 gene.
    Ferguson-Smith AC; Sasaki H; Cattanach BM; Surani MA
    Nature; 1993 Apr; 362(6422):751-5. PubMed ID: 8469285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmentally imprinted genes as markers for bladder tumor progression.
    Cooper MJ; Fischer M; Komitowski D; Shevelev A; Schulze E; Ariel I; Tykocinski ML; Miron S; Ilan J; de Groot N; Hochberg A
    J Urol; 1996 Jun; 155(6):2120-7. PubMed ID: 8618347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour.
    Steenman MJ; Rainier S; Dobry CJ; Grundy P; Horon IL; Feinberg AP
    Nat Genet; 1994 Jul; 7(3):433-9. PubMed ID: 7920665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting.
    Giddings SJ; King CD; Harman KW; Flood JF; Carnaghi LR
    Nat Genet; 1994 Mar; 6(3):310-3. PubMed ID: 8012396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of imprinting caused by deletion of the H19 gene region in mice.
    Leighton PA; Ingram RS; Eggenschwiler J; Efstratiadis A; Tilghman SM
    Nature; 1995 May; 375(6526):34-9. PubMed ID: 7536897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parental imprinting of an Igf-2 transgene.
    Lee JE; Tantravahi U; Boyle AL; Efstratiadis A
    Mol Reprod Dev; 1993 Aug; 35(4):382-90. PubMed ID: 8398116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.