These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7651831)

  • 1. The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation.
    Yu A; Dill J; Wirth SS; Huang G; Lee VH; Haworth IS; Mitas M
    Nucleic Acids Res; 1995 Jul; 23(14):2706-14. PubMed ID: 7651831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins.
    Yu A; Dill J; Mitas M
    Nucleic Acids Res; 1995 Oct; 23(20):4055-7. PubMed ID: 7479064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15.
    Mitas M; Yu A; Dill J; Kamp TJ; Chambers EJ; Haworth IS
    Nucleic Acids Res; 1995 Mar; 23(6):1050-9. PubMed ID: 7731793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
    Petruska J; Arnheim N; Goodman MF
    Nucleic Acids Res; 1996 Jun; 24(11):1992-8. PubMed ID: 8668527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix.
    Yu A; Barron MD; Romero RM; Christy M; Gold B; Dai J; Gray DM; Haworth IS; Mitas M
    Biochemistry; 1997 Mar; 36(12):3687-99. PubMed ID: 9132022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn. Ganti base pairs.
    Mitas M; Yu A; Dill J; Haworth IS
    Biochemistry; 1995 Oct; 34(39):12803-11. PubMed ID: 7548035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2000 Jun; 275(24):18382-90. PubMed ID: 10849445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of actinomycin D to single-stranded DNA of sequence motifs d(TGTCT(n)G) and d(TGT(n)GTCT).
    Chen FM; Sha F; Chin KH; Chou SH
    Biophys J; 2003 Jan; 84(1):432-9. PubMed ID: 12524296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy.
    Mariappan SV; Garcoa AE; Gupta G
    Nucleic Acids Res; 1996 Feb; 24(4):775-83. PubMed ID: 8604323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATT strand of AAT.ATT trinucleotide repeats adopts stable hairpin structures induced by minor groove binding ligands.
    Trotta E; Del Grosso N; Erba M; Paci M
    Biochemistry; 2000 Jun; 39(23):6799-808. PubMed ID: 10841759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progressive myoclonus epilepsy [EPM1] repeat d(CCCCGCCCCGCG)n forms folded hairpin structures at physiological pH.
    Pataskar SS; Dash D; Brahmachari SK
    J Biomol Struct Dyn; 2001 Oct; 19(2):293-305. PubMed ID: 11697734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-dependent formation of parallel-stranded DNA in alternating AT segments.
    Germann MW; Kalisch BW; Pon RT; van de Sande JH
    Biochemistry; 1990 Oct; 29(40):9426-32. PubMed ID: 2248956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-strand conformation polymorphism (SSCP) of oligodeoxyribonucleotides: an insight into solution structural dynamics of DNAs provided by gel electrophoresis and molecular dynamics simulations.
    Biyani M; Nishigaki K
    J Biochem; 2005 Oct; 138(4):363-73. PubMed ID: 16272130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational feasibility of a hairpin with two purines in the loop. 5'-d-GGTACIAGTACC-3'.
    Raghunathan G; Jernigan RL; Miles HT; Sasisekharan V
    Biochemistry; 1991 Jan; 30(3):782-8. PubMed ID: 1988066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA hairpin loops in solution. Correlation between primary structure, thermostability and reactivity with single-strand-specific nuclease from mung bean.
    Xodo LE; Manzini G; Quadrifoglio F; van der Marel G; van Boom J
    Nucleic Acids Res; 1991 Apr; 19(7):1505-11. PubMed ID: 2027758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase H1 can catalyze RNA/DNA hybrid formation and cleavage with stable hairpin or duplex DNA oligomers.
    Li J; Wartell RM
    Biochemistry; 1998 Apr; 37(15):5154-61. PubMed ID: 9548746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational feasibility of a DNA hairpin with one-base loop.
    Bhaumik SR
    Biochem Biophys Res Commun; 1996 Mar; 220(3):853-7. PubMed ID: 8607855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.