These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7651840)

  • 21. Intermediate phase in DNA melting.
    Neher RA; Gerland U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):030902. PubMed ID: 16605493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force-induced melting of the DNA double helix 1. Thermodynamic analysis.
    Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):882-93. PubMed ID: 11159455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of random fragments of DNA according to properties of their sequences.
    Fischer SG; Lerman LS
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4420-4. PubMed ID: 6254023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partly melted DNA conformations obtained with a probability peak finding method.
    Tøstesen E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061922. PubMed ID: 16089780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of DNA dumbbells. IV. Preparation and melting of a DNA dumbbell with the 16 base-pair sequence 5'G-T-A-T-C-C-C-T-C-T-G-G-A-T-A-C3' linked on the ends by dodecyl chains.
    Doktycz MJ; Paner TM; Benight AS
    Biopolymers; 1993 Dec; 33(12):1765-77. PubMed ID: 8268405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model.
    Reiter-Schad M; Werner E; Tegenfeldt JO; Mehlig B; Ambjörnsson T
    J Chem Phys; 2015 Sep; 143(11):115101. PubMed ID: 26395739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fractional programming approach to efficient DNA melting temperature calculation.
    Leber M; Kaderali L; Schönhuth A; Schrader R
    Bioinformatics; 2005 May; 21(10):2375-82. PubMed ID: 15769839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution-based scanning for single-base alterations using a double-stranded DNA binding dye and fluorescence-melting profiles.
    Elenitoba-Johnson KS; Bohling SD
    Am J Pathol; 2001 Sep; 159(3):845-53. PubMed ID: 11549577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melting of cross-linked DNA IV. Methods for computer modeling of total influence on DNA melting of monofunctional adducts, intrastrand and interstrand cross-links formed by molecules of an antitumor drug.
    Lando DY; Fridman AS; Haroutiunian SG; Benight AS; Collery P
    J Biomol Struct Dyn; 2000 Feb; 17(4):697-711. PubMed ID: 10698107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nonequilibrium character of DNA melting: effects of the heating rate on the fine structure of melting curves.
    Kozyavkin SA; Lyubchenko YL
    Nucleic Acids Res; 1984 May; 12(10):4339-49. PubMed ID: 6328418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unfolding thermodynamics of DNA intramolecular complexes involving joined triple- and double-helical motifs.
    Khutsishvili I; Johnson S; Lee HT; Marky LA
    Methods Enzymol; 2009; 466():477-502. PubMed ID: 21609873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA melting investigated by differential scanning calorimetry and Raman spectroscopy.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1996 Dec; 71(6):3350-60. PubMed ID: 8968604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force-induced melting of the DNA double helix. 2. Effect of solution conditions.
    Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):894-900. PubMed ID: 11159456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of the diversity between DNA calorimetric profiles, differential melting curves and corresponding melting temperatures.
    Chang CL; Fridman AS; Grigoryan IE; Galyuk EN; Murashko ON; Hu CK; Lando DY
    Biopolymers; 2016 Nov; 105(11):832-9. PubMed ID: 27422497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sharp melting of polymer-DNA hybrids: an associative phase separation approach.
    Kudlay A; Gibbs JM; Schatz GC; Nguyen ST; de la Cruz MO
    J Phys Chem B; 2007 Feb; 111(7):1610-9. PubMed ID: 17256893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophoretic mobility of partially denatured DNA in a gel: qualitative and semiquantitative differences between bubbles and split ends.
    Sean D; Slater GW
    Electrophoresis; 2012 May; 33(9-10):1341-8. PubMed ID: 22648800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application.
    Dwight Z; Palais R; Wittwer CT
    Bioinformatics; 2011 Apr; 27(7):1019-20. PubMed ID: 21300699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA.
    Wienken CJ; Baaske P; Duhr S; Braun D
    Nucleic Acids Res; 2011 Apr; 39(8):e52. PubMed ID: 21297115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.