BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7651992)

  • 1. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping.
    Esrick MA; McRae DA
    Phys Med Biol; 1994 Jan; 39(1):133-44. PubMed ID: 7651992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring temperature-induced changes in tissue during hyperthermia by impedance methods.
    Gersing E
    Ann N Y Acad Sci; 1999 Apr; 873():13-20. PubMed ID: 10372145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive, in-vivo electrical impedance of EMT-6 tumours during hyperthermia: correlation with morphology and tumour-growth-delay.
    McRae DA; Esrick MA; Mueller SC
    Int J Hyperthermia; 1997; 13(1):1-20. PubMed ID: 9024923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic scaling in the dielectric response of excised EMT-6 tumours undergoing hyperthermia.
    Dissado LA; Alison JM; Hill RM; McRae DA; Esrick MA
    Phys Med Biol; 1995 Jun; 40(6):1067-84. PubMed ID: 7659731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.
    Blad B; Persson B; Lindström K
    Int J Hyperthermia; 1992; 8(1):33-43. PubMed ID: 1545162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements.
    Conway J
    Clin Phys Physiol Meas; 1987; 8 Suppl A():141-6. PubMed ID: 3568563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of impedance tomography for temperature measurements in microwave hyperthermia.
    Amasha HM; Anderson AP; Conway J; Barber DC
    Clin Phys Physiol Meas; 1988; 9 Suppl A():49-53. PubMed ID: 3240649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dielectric parameters of excised EMT-6 tumours and their change during hyperthermia.
    McRae DA; Esrick MA
    Phys Med Biol; 1992 Nov; 37(11):2045-58. PubMed ID: 1438561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the noninvasive, in vivo electrical impedance of three xenografts during the necrotic cell-response sequence.
    McRae DA; Esrick MA; Mueller SC
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):849-57. PubMed ID: 10098441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical application of thermal isoeffect dose.
    Dewhirst MW; Winget JM; Edelstein-Keshet L; Sylvester J; Engler M; Thrall DE; Page RL; Oleson JR
    Int J Hyperthermia; 1987; 3(4):307-18. PubMed ID: 3668312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired in vivo with EPT at 3 T MRI.
    Balidemaj E; Kok HP; Schooneveldt G; van Lier AL; Remis RF; Stalpers LJ; Westerveld H; Nederveen AJ; van den Berg CA; Crezee J
    Int J Hyperthermia; 2016 Aug; 32(5):558-68. PubMed ID: 26982889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations of thermal gradients in perfused tissues during water bath heating.
    Brown SL; Li XL; Pai HH; Worthington AE; Hill RP; Hunt JW
    Int J Hyperthermia; 1992; 8(2):275-87. PubMed ID: 1573316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Problems involved in temperature measurements using EIT.
    Gersing E; Krüger W; Osypka M; Vaupel P
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A153-60. PubMed ID: 8528114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of temperature distribution via recovering electrical conductivity in MREIT.
    Oh TI; Kim HJ; Jeong WC; Chauhan M; Kwon OI; Woo EJ
    Phys Med Biol; 2013 Apr; 58(8):2697-711. PubMed ID: 23552880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Temperature distribution in normal and tumor tissues of animals subjected to local SHF-hyperthermia].
    Rudakov NP; Maligonov PA
    Eksp Onkol; 1988; 10(5):69-70. PubMed ID: 3208696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-regulating hyperthermia induced using thermosensitive ferromagnetic material with a low Curie temperature.
    Saito H; Mitobe K; Ito A; Sugawara Y; Maruyama K; Minamiya Y; Motoyama S; Yoshimura N; Ogawa J
    Cancer Sci; 2008 Apr; 99(4):805-9. PubMed ID: 18294293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applied potential tomography for non-invasive temperature mapping in hyperthermia.
    Griffiths H; Ahmed A
    Clin Phys Physiol Meas; 1987; 8 Suppl A():147-53. PubMed ID: 3568564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric properties of solid tumors during normothermia and hyperthermia.
    Peloso R; Tuma DT; Jain RK
    IEEE Trans Biomed Eng; 1984 Nov; 31(11):725-8. PubMed ID: 6500596
    [No Abstract]   [Full Text] [Related]  

  • 19. Temperature measurements in normal and tumor tissue of dogs undergoing whole body hyperthermia.
    Thrall DE; Page RL; Dewhirst MW; Meyer RE; Hoopes PJ; Kornegay JN
    Cancer Res; 1986 Dec; 46(12 Pt 1):6229-35. PubMed ID: 3779643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.