These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7652212)

  • 21. Reactivity of sorbose dehydrogenase from Sinorhizobium sp. 97507 for 1,5-anhydro-D-glucitol.
    Araki T; Nakatsuka T; Kobayashi F; Watanabe-Ishimaru E; Sanada H; Tamura T; Inagaki K
    Biosci Biotechnol Biochem; 2015; 79(7):1130-2. PubMed ID: 25721692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-Sorbose-1-phosphate reductase.
    Anderson RL; Simkins RA
    Methods Enzymol; 1982; 89 Pt D():248-51. PubMed ID: 6755171
    [No Abstract]   [Full Text] [Related]  

  • 23. Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae.
    Zhang GL; Wang CW; Li C
    Biotechnol Lett; 2012 Aug; 34(8):1519-23. PubMed ID: 22547035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New mechanisms for the biosynthesis and metabolism of 2-keto-L-gulonic acid in bacteria.
    Makover S; Ramsey GB; Vane FM; Witt CG; Wright RB
    Biotechnol Bioeng; 1975 Oct; 17(10):1485-1514. PubMed ID: 1182275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [2-KGA metabolism coupling respiratory chain in Ketogulonigenium vulgare--a review].
    Li Y; Li X; Zhang Y
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1101-8. PubMed ID: 25803886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5-Deoxy-5-fluoro-L-sorbose originating from 2-deoxy-2-fluoro-D-glucitol by fermentation with Acetomonas oxydans.
    Kulhánek M; Tadra M; Pacák J; Trejbalová H; Cerný M
    Folia Microbiol (Praha); 1977; 22(4):295-7. PubMed ID: 892670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of hemolysis of canine erythrocytes induced by L-sorbose.
    Goto I; Inaba M; Shimizu T; Maede Y
    Am J Vet Res; 1994 Feb; 55(2):291-4. PubMed ID: 8172422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mtl genes and the mannitol-1-phosphate dehydrogenase from Klebsiella pneumoniae KAY2026.
    Otte S; Lengeler JW
    FEMS Microbiol Lett; 2001 Jan; 194(2):221-7. PubMed ID: 11164312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophoretic pattern of sorbitol dehydrogenase (E.C.1.1.1.14) in human seminal plasma and spermatozoa.
    Perea FJ; Vaca G; Alvarez C; Cantu JM; Ibarra B
    Ann Genet; 1989; 32(1):33-5. PubMed ID: 2751245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism.
    Kohlmeier MG; White CE; Fowler JE; Finan TM; Oresnik IJ
    Mol Genet Genomics; 2019 Jun; 294(3):739-755. PubMed ID: 30879203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural organization of the human sorbitol dehydrogenase gene (SORD).
    Iwata T; Popescu NC; Zimonjic DB; Karlsson C; Höög JO; Vaca G; Rodriguez IR; Carper D
    Genomics; 1995 Mar; 26(1):55-62. PubMed ID: 7782086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of an experimentally evolved gene duplication encoding ribitol dehydrogenase in a mutant of Klebsiella aerogenes.
    Neuberger MS; Hartley BS
    J Gen Microbiol; 1981 Feb; 122(2):181-91. PubMed ID: 6275000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis.
    Hu Y; Wan H; Li J; Zhou J
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence of the structural gene.
    Loviny T; Norton PM; Hartley BS
    Biochem J; 1985 Sep; 230(3):579-85. PubMed ID: 2933028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual relationships of xylitol and alcohol dehydrogenases in families of two protein types.
    Persson B; Hallborn J; Walfridsson M; Hahn-Hägerdal B; Keränen S; Penttilä M; Jörnvall H
    FEBS Lett; 1993 Jun; 324(1):9-14. PubMed ID: 8504864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration.
    Gauer S; Wang Z; Otten H; Etienne M; Bjerrum MJ; Lo Leggio L; Walcarius A; Giffhorn F; Kohring GW
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3023-32. PubMed ID: 24061413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of acoK, a regulatory gene of the Klebsiella pneumoniae acoABCD operon.
    Peng HL; Yang YH; Deng WL; Chang HY
    J Bacteriol; 1997 Mar; 179(5):1497-504. PubMed ID: 9045805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription termination within the regulatory nifLA operon of Klebsiella pneumoniae.
    Govantes F; Santero E
    Mol Gen Genet; 1996 Mar; 250(4):447-54. PubMed ID: 8602162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al.
    Lin JT; Goldman BS; Stewart V
    J Bacteriol; 1994 May; 176(9):2551-9. PubMed ID: 8169203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.