These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 7653167)

  • 1. Aspects of self- and cross-association hydrophobicity in a single chain binary mixture. A computer study.
    Movileanu L; Popescu D
    Acta Biochim Pol; 1995; 42(1):89-96. PubMed ID: 7653167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential length effects in a binary mixture of single chain amphiphiles in planar monolayers. A three-dimensional approach.
    Movileanu L; Popescu D
    Biosystems; 1995; 36(1):43-53. PubMed ID: 8527695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular-dynamics study of lipid bilayers: effects of the hydrocarbon chain length on permeability.
    Sugii T; Takagi S; Matsumoto Y
    J Chem Phys; 2005 Nov; 123(18):184714. PubMed ID: 16292928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers.
    Firestone MA; Seifert S
    Biomacromolecules; 2005; 6(5):2678-87. PubMed ID: 16153106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions.
    Kharakoz DP; Panchelyuga MS; Tiktopulo EI; Shlyapnikova EA
    Chem Phys Lipids; 2007 Dec; 150(2):217-28. PubMed ID: 17915200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association probabilities between the single-chain amphiphiles into a binary mixture in plan monolayers (II).
    Popescu D
    Biochim Biophys Acta; 1993 Oct; 1152(1):35-43. PubMed ID: 8399303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the bilayer phase transition temperatures for monoenoic phosphatidylcholines and phosphatidylethanolamines and the interconversion between them.
    Huang CH; Li S; Lin HN; Wang G
    Arch Biochem Biophys; 1996 Oct; 334(1):135-42. PubMed ID: 8837748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained simulations of lipid bilayers.
    Stevens MJ
    J Chem Phys; 2004 Dec; 121(23):11942-8. PubMed ID: 15634156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity.
    Prenner EJ; Lewis RN; Neuman KC; Gruner SM; Kondejewski LH; Hodges RS; McElhaney RN
    Biochemistry; 1997 Jun; 36(25):7906-16. PubMed ID: 9201936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association probabilities between the single chain amphiphiles into a binary mixture in planar monolayers.
    Popescu D; Victor G
    Biochim Biophys Acta; 1990 Dec; 1030(2):238-50. PubMed ID: 2261486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects.
    Haque ME; Lentz BR
    Biochemistry; 2004 Mar; 43(12):3507-17. PubMed ID: 15035621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of water at the interface with phospholipid bilayers.
    Bhide SY; Berkowitz ML
    J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular level investigation of organization in ternary lipid bilayer: a computational approach.
    Mondal S; Mukhopadhyay C
    Langmuir; 2008 Sep; 24(18):10298-305. PubMed ID: 18712895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol.
    Zhang Z; Bhide SY; Berkowitz ML
    J Phys Chem B; 2007 Nov; 111(44):12888-97. PubMed ID: 17941659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configurational entropies of lipids in pure and mixed bilayers from atomic-level and coarse-grained molecular dynamics simulations.
    Baron R; de Vries AH; Hünenberger PH; van Gunsteren WF
    J Phys Chem B; 2006 Aug; 110(31):15602-14. PubMed ID: 16884285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism.
    Epand RM; Epand RF; Hughes DW; Sayer BG; Borochov N; Bach D; Wachtel E
    Chem Phys Lipids; 2005 May; 135(1):39-53. PubMed ID: 15854624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers.
    Bar LK; Barenholz Y; Thompson TE
    Biochemistry; 1997 Mar; 36(9):2507-16. PubMed ID: 9054556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-pressure study on bilayer phase behavior of oleoylmyristoyl- and myristoyloleoyl-phosphatidylcholines.
    Tada K; Saito K; Goto M; Tamai N; Matsuki H; Kaneshina S
    Biophys Chem; 2008 Nov; 138(1-2):36-41. PubMed ID: 18804320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.