These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 765325)

  • 21. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of valine at position 152 for the substrate transport and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane binding of dopamine transporter.
    Lee SH; Chang MY; Lee KH; Park BS; Lee YS; Chin HR; Lee YS
    Mol Pharmacol; 2000 May; 57(5):883-9. PubMed ID: 10779370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane bound substrate recognition components of the dicarboxylate transport system in Escherichia coli.
    Lo TC; Sanwal BD
    Biochem Biophys Res Commun; 1975 Mar; 63(1):278-85. PubMed ID: 1092298
    [No Abstract]   [Full Text] [Related]  

  • 24. Transport of sugars and amino acids in bacteria. XIV. Preferential inhibition of oxidase activities and active transport reactions for amino acids by azidebenzenes.
    Kin E; Anraku Y
    J Biochem; 1975 Jul; 78(1):159-63. PubMed ID: 127788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. L-Arabinose transport and the L-arabinose binding protein of Escherichia coli.
    Hogg RW
    J Supramol Struct; 1977; 6(3):411-7. PubMed ID: 338992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis.
    Eisenstein E
    Arch Biochem Biophys; 1995 Jan; 316(1):311-8. PubMed ID: 7840631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Three classes of transport systems in bacteria].
    Kepes A
    Biochimie; 1973; 55(6):693-702. PubMed ID: 4589242
    [No Abstract]   [Full Text] [Related]  

  • 28. Membrane receptor dependent iron transport in Escherichia coli.
    Hantke K; Braun V
    FEBS Lett; 1975 Jan; 49(3):301-5. PubMed ID: 1089064
    [No Abstract]   [Full Text] [Related]  

  • 29. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity.
    Trakhanov S; Vyas NK; Luecke H; Kristensen DM; Ma J; Quiocho FA
    Biochemistry; 2005 May; 44(17):6597-608. PubMed ID: 15850393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hexose phosphate transport system of Escherichia coli.
    Dietz GW
    Adv Enzymol Relat Areas Mol Biol; 1976; 44():237-59. PubMed ID: 775939
    [No Abstract]   [Full Text] [Related]  

  • 31. Aspects of maltose transport in Escherichia coli: established facts and educated guesses.
    Boos W
    Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
    Schuster J; Binder S
    Plant Mol Biol; 2005 Jan; 57(2):241-54. PubMed ID: 15821880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mathematical treatment of transport data of bacterial transport systems to estimate limitation in diffusion through the outer membrane.
    Tralau C; Greller G; Pajatsch M; Boos W; Bohl E
    J Theor Biol; 2000 Nov; 207(1):1-14. PubMed ID: 11027475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Derepressed leucine transport activity in Escherichia coli.
    Rahmanian M; Oxender DL
    J Supramol Struct; 1972; 1(1):55-9. PubMed ID: 4568192
    [No Abstract]   [Full Text] [Related]  

  • 35. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process.
    DiRusso CC; Black PN
    Mol Cell Biochem; 1999 Feb; 192(1-2):41-52. PubMed ID: 10331657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sugar and amino acid transport in animal cells.
    Hopfer U
    Horiz Biochem Biophys; 1976; 2():106-33. PubMed ID: 6372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active-site-directed inhibition of the plasma-membrane carrier transporting short-chain, neutral amino acids into Trypanosoma brucei.
    Owen MJ; Voorheis HP
    Eur J Biochem; 1976 Mar; 62(3):619-24. PubMed ID: 4307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of membrane potential in protein folding and domain formation during secretion in Escherichia coli.
    Copeland BR; Landick R; Nazos PM; Oxender DL
    J Cell Biochem; 1984; 24(4):345-56. PubMed ID: 6381514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial transport.
    Boos W
    Annu Rev Biochem; 1974; 43(0):123-46. PubMed ID: 4277372
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.