These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7653254)

  • 1. Pitch is influenced by differences in gas pressure between the middle ear and the external auditory canal. A tentative explanation based on a new aspect in inner ear theory.
    Fritze W
    Acta Otolaryngol; 1995 May; 115(3):359-62. PubMed ID: 7653254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and acoustical influences on spontaneous oto-acoustic emissions.
    Schloth E; Zwicker E
    Hear Res; 1983 Sep; 11(3):285-93. PubMed ID: 6630084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does static ear canal pressure influence pure tone pitch perception?
    Rowan D; Kapadia S; Lutman ME
    Acta Otolaryngol; 2004 Apr; 124(3):286-9. PubMed ID: 15141757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tympanometric changes at 226 Hz and 678 Hz across 10 trials and for two directions of ear canal pressure change.
    Wilson RH; Shanks JE; Kaplan SK
    J Speech Hear Res; 1984 Jun; 27(2):257-66. PubMed ID: 6738038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ear canal static pressure on the dynamic behaviour of outer and middle ear in newborns.
    Aithal V; Kei J; Driscoll C; Murakoshi M; Wada H
    Int J Pediatr Otorhinolaryngol; 2016 Mar; 82():64-72. PubMed ID: 26857318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standing wave patterns in the human ear canal used for estimation of acoustic energy reflectance at the eardrum.
    Lawton BW; Stinson MR
    J Acoust Soc Am; 1986 Apr; 79(4):1003-9. PubMed ID: 3700855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the acoustic input impedance of the ear.
    Withnell RH; Gowdy LE
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):611-22. PubMed ID: 23917695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple frequency tympanometry: effects of ear canal volume compensation on static acoustic admittance and estimates of middle ear resonance.
    Shanks JE; Wilson RH; Cambron NK
    J Speech Hear Res; 1993 Feb; 36(1):178-85. PubMed ID: 8450657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of acoustic impedance and reflectance in the human ear canal.
    Voss SE; Allen JB
    J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency plane waves in the ear canal: application of a simple asymptotic theory.
    Rabbitt RD
    J Acoust Soc Am; 1988 Dec; 84(6):2070-80. PubMed ID: 3225353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic intensity, impedance and reflection coefficient in the human ear canal.
    Farmer-Fedor BL; Rabbitt RD
    J Acoust Soc Am; 2002 Aug; 112(2):600-20. PubMed ID: 12186041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelation of different oto-acoustic emissions.
    Zwicker E; Schloth E
    J Acoust Soc Am; 1984 Apr; 75(4):1148-54. PubMed ID: 6725763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wideband reflectance tympanometry in normal adults.
    Margolis RH; Saly GL; Keefe DH
    J Acoust Soc Am; 1999 Jul; 106(1):265-80. PubMed ID: 10420621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect size on resonance of the outer ear canal by simulation of middle ear lesions using a temporal bone preparation].
    Scheinpflug L; Vorwerk U; Begall K
    Laryngorhinootologie; 1995 Jan; 74(1):39-42. PubMed ID: 7888021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.