BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7653544)

  • 1. Oxidation of glutamic acid by the splanchnic bed in humans.
    Battezzati A; Brillon DJ; Matthews DE
    Am J Physiol; 1995 Aug; 269(2 Pt 1):E269-76. PubMed ID: 7653544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of glutamine by the splanchnic bed in humans.
    Haisch M; Fukagawa NK; Matthews DE
    Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E593-602. PubMed ID: 10751191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splanchnic bed utilization of enteral alpha-ketoisocaproate in humans.
    Matthews DE; Harkin R; Battezzati A; Brillon DJ
    Metabolism; 1999 Dec; 48(12):1555-63. PubMed ID: 10599988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splanchnic bed utilization of leucine and phenylalanine in humans.
    Matthews DE; Marano MA; Campbell RG
    Am J Physiol; 1993 Jan; 264(1 Pt 1):E109-18. PubMed ID: 8430779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Splanchnic bed utilization of glutamine and glutamic acid in humans.
    Matthews DE; Marano MA; Campbell RG
    Am J Physiol; 1993 Jun; 264(6 Pt 1):E848-54. PubMed ID: 8101428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splanchnic utilization of enteral alanine in humans.
    Battezzati A; Haisch M; Brillon DJ; Matthews DE
    Metabolism; 1999 Jul; 48(7):915-21. PubMed ID: 10421236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splanchnic oxidation is the major metabolic fate of dietary glutamate in enterally fed preterm infants.
    Riedijk MA; de Gast-Bakker DA; Wattimena JL; van Goudoever JB
    Pediatr Res; 2007 Oct; 62(4):468-73. PubMed ID: 17667855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylalanine flux in adult men: estimates with different tracers and route of administration.
    Krempf M; Hoerr RA; Marks L; Young VR
    Metabolism; 1990 Jun; 39(6):560-2. PubMed ID: 2352476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of the quantitative utilization of parenterally and enterally administered leucine and L-[1-13C,15N]leucine within the whole body and the splanchnic region.
    Yu YM; Young VR; Tompkins RG; Burke JF
    JPEN J Parenter Enteral Nutr; 1995; 19(3):209-15. PubMed ID: 8551649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamine metabolism in Crohn's disease: a stable isotope study.
    Bourreille A; Humbert B; Maugère P; Galmiche JP; Darmaun D
    Clin Nutr; 2004 Oct; 23(5):1167-75. PubMed ID: 15380910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An isotopic study of the effect of dietary carbohydrate on the metabolic fate of dietary leucine and phenylalanine.
    Krempf M; Hoerr RA; Pelletier VA; Marks LM; Gleason R; Young VR
    Am J Clin Nutr; 1993 Feb; 57(2):161-9. PubMed ID: 8424384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of minimal enteral feeding on splanchnic uptake of leucine in the postabsorptive state in preterm infants.
    Sáenz de Pipaón M; VanBeek RH; Quero J; Pérez J; Wattimena DJ; Sauer PJ
    Pediatr Res; 2003 Feb; 53(2):281-7. PubMed ID: 12538787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic aspects of acetate metabolism in healthy humans using [1-13C] acetate.
    Pouteau E; Piloquet H; Maugeais P; Champ M; Dumon H; Nguyen P; Krempf M
    Am J Physiol; 1996 Jul; 271(1 Pt 1):E58-64. PubMed ID: 8760082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twenty-four-hour intravenous and oral tracer studies with L-[1-13C]phenylalanine and L-[3,3-2H2]tyrosine at a tyrosine-free, generous phenylalanine intake in adults.
    Sanchez M; El-Khoury AE; Castillo L; Chapman TE; Basile Filho A; Beaumier L; Young VR
    Am J Clin Nutr; 1996 Apr; 63(4):532-45. PubMed ID: 8599317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylalanine utilization by the gut and liver measured with intravenous and intragastric tracers in pigs.
    Stoll B; Burrin DG; Henry J; Jahoor F; Reeds PJ
    Am J Physiol; 1997 Dec; 273(6):G1208-17. PubMed ID: 9435545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional acetate kinetics and oxidation in human volunteers.
    Mittendorfer B; Sidossis LS; Walser E; Chinkes DL; Wolfe RR
    Am J Physiol; 1998 Jun; 274(6):E978-83. PubMed ID: 9611145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients.
    Nair KS; Ford GC; Ekberg K; Fernqvist-Forbes E; Wahren J
    J Clin Invest; 1995 Jun; 95(6):2926-37. PubMed ID: 7769135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of glutamine metabolism to exogenous glutamine in humans.
    Hankard RG; Darmaun D; Sager BK; D'Amore D; Parsons WR; Haymond M
    Am J Physiol; 1995 Oct; 269(4 Pt 1):E663-70. PubMed ID: 7485479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary glutamate is almost entirely removed in its first pass through the splanchnic bed in premature infants.
    Haÿs SP; Ordonez JM; Burrin DG; Sunehag AL
    Pediatr Res; 2007 Sep; 62(3):353-6. PubMed ID: 17622957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splanchnic and whole body L-[1-13C,15N]leucine kinetics in relation to enteral and parenteral amino acid supply.
    Yu YM; Burke JF; Vogt JA; Chambers L; Young VR
    Am J Physiol; 1992 May; 262(5 Pt 1):E687-94. PubMed ID: 1590378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.