These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7653574)

  • 1. Dipeptide transport characteristics of the apical membrane of rat lung type II pneumocytes.
    Meredith D; Boyd CA
    Am J Physiol; 1995 Aug; 269(2 Pt 1):L137-43. PubMed ID: 7653574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipeptide transport in brush-border membrane vesicles (BBMV) prepared from human full-term placentae.
    Meredith D; Laynes RW
    Placenta; 1996; 17(2-3):173-9. PubMed ID: 8730888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tripeptide transport in rat lung.
    Helliwell PA; Meredith D; Boyd CA; Bronk JR; Lister N; Bailey PD
    Biochim Biophys Acta; 1994 Mar; 1190(2):430-4. PubMed ID: 8142446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-charge dependence of stoichiometry shows membrane potential is the driving force for proton-peptide cotransport in rat renal cortex.
    Temple CS; Bronk JR; Bailey PD; Boyd CA
    Pflugers Arch; 1995 Sep; 430(5):825-9. PubMed ID: 7478939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral dipeptide transport by the intestine of the teleost Oreochromis mossambicus.
    Thamotharan M; Zonno V; Storelli C; Ahearn GA
    Am J Physiol; 1996 May; 270(5 Pt 2):R948-54. PubMed ID: 8928925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrogenic, proton-coupled, intestinal dipeptide transport in herbivorous and carnivorous teleosts.
    Thamotharan M; Gomme J; Zonno V; Maffia M; Storelli C; Ahearn GA
    Am J Physiol; 1996 May; 270(5 Pt 2):R939-47. PubMed ID: 8928924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A; Terasaki T; Tamai I; Hirooka H
    J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles.
    Tiruppathi C; Ganapathy V; Leibach FH
    J Biol Chem; 1990 Sep; 265(25):14870-4. PubMed ID: 2394703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal glycyl-L-phenylalanine and L-phenylalanine transport in a euryhaline teleost.
    Reshkin SJ; Ahearn GA
    Am J Physiol; 1991 Mar; 260(3 Pt 2):R563-9. PubMed ID: 2001005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a glycyl-proline transport system in ovine enterocyte brush-border membrane vesicles.
    Backwell FR; Wilson D; Schweizer A
    Biochem Biophys Res Commun; 1995 Oct; 215(2):561-5. PubMed ID: 7487992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for the kinetics of neutral and anionic dipeptide-proton cotransport by the apical membrane of rat kidney cortex.
    Temple CS; Bailey PD; Bronk JR; Boyd CA
    J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):795-808. PubMed ID: 8865075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells.
    Basu SK; Haworth IS; Bolger MB; Lee VH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2365-73. PubMed ID: 9804145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of dipeptide transport in rat renal brush border membranes: studies with glycylsarcosine.
    Tiruppathi C; Ganapathy V; Leibach FH
    Pediatr Res; 1987 Dec; 22(6):641-6. PubMed ID: 2829104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple carriers for dipeptide transport: carrier-mediated transport of glycyl-L-proline in renal BBMV.
    Skopicki HA; Fisher K; Zikos D; Bloch R; Flouret G; Peterson DR
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F670-8. PubMed ID: 1928378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-dependent D-glucose and L-alanine transport in eel intestinal brush border membrane vesicles.
    Storelli C; Vilella S; Cassano G
    Am J Physiol; 1986 Sep; 251(3 Pt 2):R463-9. PubMed ID: 3752280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline transport by brush-border membrane vesicles of lobster antennal glands.
    Behnke RD; Wong RK; Huse SM; Reshkin SJ; Ahearn GA
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F311-20. PubMed ID: 2155538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a thiodipeptide, L-phenylalanyl-Ψ[CS-N]-L-alanine, as a novel probe for peptide transporter 1.
    Arakawa H; Saito S; Kanagawa M; Kamioka H; Yano K; Morimoto K; Ogihara T
    Drug Metab Pharmacokinet; 2014; 29(6):470-4. PubMed ID: 25008848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.