BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 7654171)

  • 1. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.
    Porter RK; Brand MD
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes.
    Nobes CD; Brown GC; Olive PN; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12903-9. PubMed ID: 2376579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):637-44. PubMed ID: 2836195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hormones on proton compartmentation in hepatocytes.
    Strzelecki T; Thomas JA; Koch CD; LaNoue KF
    J Biol Chem; 1984 Apr; 259(7):4122-9. PubMed ID: 6323459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport.
    Brand MD; Chien LF; Diolez P
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):27-9. PubMed ID: 8280106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.
    Brown GC
    J Biol Chem; 1989 Sep; 264(25):14704-9. PubMed ID: 2549030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proton leak across the mitochondrial inner membrane.
    Brand MD
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):128-33. PubMed ID: 2393654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide, a physiological modulator of mitochondrial function.
    Okada S; Takehara Y; Yabuki M; Yoshioka T; Yasuda T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 1996; 28(2):69-82. PubMed ID: 8946766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the mitochondrial protonmotive force in isolated hepatocytes.
    Hoek JB; Nicholls DG; Williamson JR
    J Biol Chem; 1980 Feb; 255(4):1458-64. PubMed ID: 7354039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status.
    Hafner RP; Nobes CD; McGown AD; Brand MD
    Eur J Biochem; 1988 Dec; 178(2):511-8. PubMed ID: 2850181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat.
    Rolfe DF; Hulbert AJ; Brand MD
    Biochim Biophys Acta; 1994 Dec; 1188(3):405-16. PubMed ID: 7803454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tamoxifen on the electron transport chain of isolated rat liver mitochondria.
    Tuquet C; Dupont J; Mesneau A; Roussaux J
    Cell Biol Toxicol; 2000; 16(4):207-19. PubMed ID: 11101003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment.
    Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P
    Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The apparent non-linearity of the relationship between the rate of respiration and the protonmotive force of mitochondria can be explained by heterogeneity of mitochondrial preparations.
    Duszyński J; Wojtczak L
    FEBS Lett; 1985 Mar; 182(2):243-8. PubMed ID: 2984042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting state respiration of mitochondria: reappraisal of the role of passive ion fluxes.
    Zółkiewska A; Zabłocka B; Duszyński J; Wojtczak L
    Arch Biochem Biophys; 1989 Dec; 275(2):580-90. PubMed ID: 2556969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of respiration and oxidative phosphorylation in isolated rat liver cells.
    Brown GC; Lakin-Thomas PL; Brand MD
    Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.