These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 7654177)
1. Time-course studies by neutron solution scattering and biochemical assays of the aggregation of human low-density lipoprotein during Cu(2+)-induced oxidation. Meyer DF; Mayans MO; Groot PH; Suckling KE; Bruckdorfer KR; Perkins SJ Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):417-26. PubMed ID: 7654177 [TBL] [Abstract][Full Text] [Related]
2. Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu(2+)-induced oxidation in relation to changes in lipid composition. Meyer DF; Nealis AS; Macphee CH; Groot PH; Suckling KE; Bruckdorfer KR; Perkins SJ Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):217-27. PubMed ID: 8870672 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the structure of polydisperse human low-density lipoprotein by neutron scattering. Meyer DF; Nealis AS; Bruckdorfer KR; Perkins SJ Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):407-15. PubMed ID: 7654176 [TBL] [Abstract][Full Text] [Related]
4. Structural changes in oxidised low-density lipoproteins and of the effect of the anti-atherosclerotic drug probucol observed by synchrotron X-ray and neutron solution scattering. Bellamy MF; Nealis AS; Aitken JW; Bruckdorfer KR; Perkins SJ Eur J Biochem; 1989 Aug; 183(2):321-9. PubMed ID: 2759086 [TBL] [Abstract][Full Text] [Related]
5. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein. Viita H; Närvänen O; Ylä-Herttuala S Life Sci; 1999; 65(8):783-93. PubMed ID: 10466744 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. Hoff HF; Whitaker TE; O'Neil J J Biol Chem; 1992 Jan; 267(1):602-9. PubMed ID: 1730620 [TBL] [Abstract][Full Text] [Related]
7. The role of copper reduction by alpha-tocopherol in low-density lipoprotein oxidation. Proudfoot JM; Croft KD; Puddey IB; Beilin LJ Free Radic Biol Med; 1997; 23(5):720-8. PubMed ID: 9296448 [TBL] [Abstract][Full Text] [Related]
8. Lesion-derived low density lipoprotein and oxidized low density lipoprotein share a lability for aggregation, leading to enhanced macrophage degradation. Hoff HF; O'Neil J Arterioscler Thromb; 1991; 11(5):1209-22. PubMed ID: 1911707 [TBL] [Abstract][Full Text] [Related]
9. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Wagner P; Heinecke JW Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3338-46. PubMed ID: 9409331 [TBL] [Abstract][Full Text] [Related]
10. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Yan LJ; Lodge JK; Traber MG; Packer L Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246 [TBL] [Abstract][Full Text] [Related]
11. Characterization of peroxynitrite-oxidized low density lipoprotein binding to human CD36. Guy RA; Maguire GF; Crandall I; Connelly PW; Kain KC Atherosclerosis; 2001 Mar; 155(1):19-28. PubMed ID: 11223422 [TBL] [Abstract][Full Text] [Related]
12. Plasma LDL oxidation leads to its aggregation in the atherosclerotic apolipoprotein E-deficient mice. Maor I; Hayek T; Coleman R; Aviram M Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):2995-3005. PubMed ID: 9409286 [TBL] [Abstract][Full Text] [Related]
13. Copper can promote oxidation of LDL by markedly different mechanisms. Ziouzenkova O; Sevanian A; Abuja PM; Ramos P; Esterbauer H Free Radic Biol Med; 1998 Mar; 24(4):607-23. PubMed ID: 9559873 [TBL] [Abstract][Full Text] [Related]
14. Macrophage oxidative modification of low density lipoprotein occurs independently of its binding to the low density lipoprotein receptor. Tangirala RK; Mol MJ; Steinberg D J Lipid Res; 1996 Apr; 37(4):835-43. PubMed ID: 8732783 [TBL] [Abstract][Full Text] [Related]
15. Modification of the lipid-protein interaction in human low-density lipoprotein destabilizes ApoB-100 and decreases oxidizability. Abuja PM; Lohner K; Prassl R Biochemistry; 1999 Mar; 38(11):3401-8. PubMed ID: 10079085 [TBL] [Abstract][Full Text] [Related]
16. Phospholipids in oxidized LDL not adducted to apoB are recognized by the CD36 scavenger receptor. Podrez EA; Hoppe G; O'Neil J; Hoff HF Free Radic Biol Med; 2003 Feb; 34(3):356-64. PubMed ID: 12543251 [TBL] [Abstract][Full Text] [Related]
17. Decrease in the particle size of low-density lipoprotein (LDL) by oxidation. Hidaka A; Inoue K; Kutsukake S; Adachi M; Kakuta Y; Kojo S Bioorg Med Chem Lett; 2005 Jun; 15(11):2781-5. PubMed ID: 15911255 [TBL] [Abstract][Full Text] [Related]
18. Higher reactivity of apolipoprotein B-100 and alpha-tocopherol compared to sialic acid moiety of low-density lipoprotein (LDL) in radical reaction. Matsukawa N; Nariyama Y; Hashimoto R; Kojo S Bioorg Med Chem; 2003 Sep; 11(18):4009-13. PubMed ID: 12927863 [TBL] [Abstract][Full Text] [Related]
19. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine. Scaccini C; Chiesa G; Jialal I J Lipid Res; 1994 Jun; 35(6):1085-92. PubMed ID: 8077847 [TBL] [Abstract][Full Text] [Related]
20. Characterization of aggregated low density lipoproteins induced by copper-catalyzed oxidation. Cynshi O; Takashima Y; Suzuki T; Kawabe Y; Ohba Y; Kodama T J Atheroscler Thromb; 1994; 1(2):87-97. PubMed ID: 9222875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]