These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 7654309)
1. Suppressed acid formation by cofeeding of glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site. Goel A; Lee J; Domach MM; Ataai MM Biotechnol Prog; 1995; 11(4):380-5. PubMed ID: 7654309 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. Neermann J; Wagner R J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765 [TBL] [Abstract][Full Text] [Related]
4. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase. Huerta-Beristain G; Utrilla J; Hernández-Chávez G; Bolívar F; Gosset G; Martinez A J Mol Microbiol Biotechnol; 2008; 15(1):55-64. PubMed ID: 18349551 [TBL] [Abstract][Full Text] [Related]
5. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Ahmed N; Williams JF; Weidemann MJ Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014 [TBL] [Abstract][Full Text] [Related]
6. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation. Clarke SD; Watkins PA; Lane MD J Lipid Res; 1979 Nov; 20(8):974-85. PubMed ID: 230268 [TBL] [Abstract][Full Text] [Related]
7. Sustained and constitutive high levels of protein production in continuous cultures of bacillus subtilis. Vierheller C; Goel A; Peterson M; Domach MM; Ataai MM Biotechnol Bioeng; 1995 Sep; 47(5):520-4. PubMed ID: 18623430 [TBL] [Abstract][Full Text] [Related]
8. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
9. Intracellular glucose and binding of hexokinase and phosphofructokinase to particulate fractions increase under hypoxia in heart of the amazonian armored catfish (Liposarcus pardalis). Treberg JR; MacCormack TJ; Lewis JM; Almeida-Val VM; Val AL; Driedzic WR Physiol Biochem Zool; 2007; 80(5):542-50. PubMed ID: 17717817 [TBL] [Abstract][Full Text] [Related]
10. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Goel A; Ferrance J; Jeong J; Ataai MM Biotechnol Bioeng; 1993 Sep; 42(6):686-96. PubMed ID: 18613101 [TBL] [Abstract][Full Text] [Related]
11. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux. Goel A; Lee J; Domach MM; Ataai MM Biotechnol Bioeng; 1999 Jul; 64(2):129-34. PubMed ID: 10397848 [TBL] [Abstract][Full Text] [Related]
12. Glucose uptake and glycolytic flux in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet. Brito SR; Moura MA; Kawashita NH; Brito MN; Kettelhut IC; Migliorini RH Metabolism; 2001 Oct; 50(10):1208-12. PubMed ID: 11586495 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain. Morland C; Henjum S; Iversen EG; Skrede KK; Hassel B Neurochem Int; 2007 Apr; 50(5):703-9. PubMed ID: 17316901 [TBL] [Abstract][Full Text] [Related]
14. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231 [TBL] [Abstract][Full Text] [Related]
15. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media. Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054 [TBL] [Abstract][Full Text] [Related]
16. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Emmerling M; Bailey JE; Sauer U Metab Eng; 1999 Apr; 1(2):117-27. PubMed ID: 10935925 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate. Chen S; Chu J; Zhuang Y; Zhang S Biotechnol Lett; 2005 May; 27(10):689-92. PubMed ID: 16049735 [TBL] [Abstract][Full Text] [Related]
18. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Zhu J; Shimizu K Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546 [TBL] [Abstract][Full Text] [Related]
19. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation. Cheng J; Zhuang W; Li NN; Tang CL; Ying HJ Lett Appl Microbiol; 2017 Jan; 64(1):73-78. PubMed ID: 27739585 [TBL] [Abstract][Full Text] [Related]
20. Enhanced recombinant protein production in pyruvate kinase mutant of Bacillus subtilis. Pan Z; Cunningham DS; Zhu T; Ye K; Koepsel RR; Domach MM; Ataai MM Appl Microbiol Biotechnol; 2010 Feb; 85(6):1769-78. PubMed ID: 19787348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]