These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 7654610)

  • 1. Simulation of an anatomically defined local circuit: the cone-horizontal cell network in cat retina.
    Smith RG
    Vis Neurosci; 1995; 12(3):545-61. PubMed ID: 7654610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone receptive field in cat retina computed from microcircuitry.
    Smith RG; Sterling P
    Vis Neurosci; 1990 Nov; 5(5):453-61. PubMed ID: 2288894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
    Wool LE; Crook JD; Troy JB; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2018 Feb; 38(6):1520-1540. PubMed ID: 29305531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic center-surround receptive field model of monkey H1 horizontal cells.
    Packer OS; Dacey DM
    J Vis; 2005 Dec; 5(11):1038-54. PubMed ID: 16441201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptive field structure of H1 horizontal cells in macaque monkey retina.
    Packer OS; Dacey DM
    J Vis; 2002; 2(4):272-92. PubMed ID: 12678578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kuffler's inhibitory surround, the function of the inner plexiform layer and an information processing unit in the retina. Neural interaction at the nanometer level.
    Sjöstrand FS
    J Submicrosc Cytol Pathol; 2003 Oct; 35(4):359-71. PubMed ID: 15137678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina.
    Diller L; Packer OS; Verweij J; McMahon MJ; Williams DR; Dacey DM
    J Neurosci; 2004 Feb; 24(5):1079-88. PubMed ID: 14762126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperpolarizing, small-field, amacrine cells in cone pathways of cat retina.
    Kolb H; Nelson R
    J Comp Neurol; 1996 Jul; 371(3):415-36. PubMed ID: 8842896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.
    Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA
    J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input?
    Sun H; Smithson HE; Zaidi Q; Lee BB
    Vis Neurosci; 2006; 23(3-4):441-6. PubMed ID: 16961978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How neural interactions form neural responses in the salamander retina.
    Teeters J; Jacobs A; Werblin F
    J Comput Neurosci; 1997 Jan; 4(1):5-27. PubMed ID: 9046449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic cone adaptation modulates feedback efficiency from horizontal cells to cones.
    Fahrenfort I; Habets RL; Spekreijse H; Kamermans M
    J Gen Physiol; 1999 Oct; 114(4):511-24. PubMed ID: 10498670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.
    Ströh S; Puller C; Swirski S; Hölzel MB; van der Linde LIS; Segelken J; Schultz K; Block C; Monyer H; Willecke K; Weiler R; Greschner M; Janssen-Bienhold U; Dedek K
    J Neurosci; 2018 Feb; 38(8):2015-2028. PubMed ID: 29352045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal representation of the elementary visual signal.
    Li PH; Field GD; Greschner M; Ahn D; Gunning DE; Mathieson K; Sher A; Litke AM; Chichilnisky EJ
    Neuron; 2014 Jan; 81(1):130-9. PubMed ID: 24411737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amacrine cell contributions to red-green color opponency in central primate retina: a model study.
    Lebedev DS; Marshak DW
    Vis Neurosci; 2007; 24(4):535-47. PubMed ID: 17900377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatial structure of cone-opponent receptive fields in macaque retina.
    Lee BB; Cooper B; Cao D
    Vision Res; 2018 Oct; 151():141-151. PubMed ID: 28709923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical coupling, receptive fields, and relative rod/cone inputs of horizontal cells in the tiger salamander retina.
    Zhang AJ; Zhang J; Wu SM
    J Comp Neurol; 2006 Nov; 499(3):422-31. PubMed ID: 16998920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of surround-induced depolarizing responses in goldfish cones.
    Kraaij DA; Spekreijse H; Kamermans M
    J Gen Physiol; 2000 Jan; 115(1):3-16. PubMed ID: 10613914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: evidence for the proton hypothesis of surround formation.
    Davenport CM; Detwiler PB; Dacey DM
    J Neurosci; 2008 Jan; 28(2):456-64. PubMed ID: 18184788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior.
    Hennig MH; Funke K; Wörgötter F
    J Neurosci; 2002 Oct; 22(19):8726-38. PubMed ID: 12351748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.