These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7654632)

  • 1. The influence of micro-topography on cellular response and the implications for silicone implants.
    von Recum AF; van Kooten TG
    J Biomater Sci Polym Ed; 1995; 7(2):181-98. PubMed ID: 7654632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface changes of nanotopography by carbon ion implantation to enhance the biocompatibility of silicone rubber: an in vitro study of the optimum ion fluence and adsorbed protein.
    Li X; Zhou X; Chen Y; Yu S; Chen X; Xia X; Shi X; Zhang Y; Fan D
    J Mater Sci Mater Med; 2017 Sep; 28(10):167. PubMed ID: 28916983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY; Liu T; Li WJ; Shi XH; Fan DL
    Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtopography and soft tissue response.
    Campbell CE; von Recum AF
    J Invest Surg; 1989; 2(1):51-74. PubMed ID: 2487399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology.
    Hallab NJ; Bundy KJ; O'Connor K; Clark R; Moses RL
    J Long Term Eff Med Implants; 1995; 5(3):209-31. PubMed ID: 10172729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber.
    DeFife KM; Shive MS; Hagen KM; Clapper DL; Anderson JM
    J Biomed Mater Res; 1999 Mar; 44(3):298-307. PubMed ID: 10397932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of silicone for percutaneous implantation.
    Okada T; Ikada Y
    J Biomater Sci Polym Ed; 1995; 7(2):171-80. PubMed ID: 7654631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of grooved titanium substratum on human osteoblastic cell growth.
    Anselme K; Bigerelle M; Noël B; Iost A; Hardouin P
    J Biomed Mater Res; 2002 Jun; 60(4):529-40. PubMed ID: 11948511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants.
    Rieger E; Dupret-Bories A; Salou L; Metz-Boutigue MH; Layrolle P; Debry C; Lavalle P; Vrana NE
    Nanoscale; 2015 Jun; 7(21):9908-18. PubMed ID: 25967094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ppHEMA-modified silicone rubber film towards improving rabbit corneal epithelial cell attachment and growth.
    Hsiue GH; Lee SD; Wang CC; Shiue MH; Chang PC
    Biomaterials; 1993 Jul; 14(8):591-7. PubMed ID: 8399952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive adsorption of proteins: key of the relationship between substratum surface properties and adhesion of epithelial cells.
    Dewez JL; Doren A; Schneider YJ; Rouxhet PG
    Biomaterials; 1999 Mar; 20(6):547-59. PubMed ID: 10213358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydopamine deposition with anodic oxidation for better connective tissue attachment to transmucosal implants.
    Teng F; Chen H; Xu Y; Liu Y; Ou G
    J Periodontal Res; 2018 Apr; 53(2):222-231. PubMed ID: 29063626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction.
    Allen LT; Tosetto M; Miller IS; O'Connor DP; Penney SC; Lynch I; Keenan AK; Pennington SR; Dawson KA; Gallagher WM
    Biomaterials; 2006 Jun; 27(16):3096-108. PubMed ID: 16460797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modern biomaterials: a review - bulk properties and implications of surface modifications.
    Roach P; Eglin D; Rohde K; Perry CC
    J Mater Sci Mater Med; 2007 Jul; 18(7):1263-77. PubMed ID: 17443395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of implant surface characteristics in the healing of bone.
    Kieswetter K; Schwartz Z; Dean DD; Boyan BD
    Crit Rev Oral Biol Med; 1996; 7(4):329-45. PubMed ID: 8986395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physico-chemical characteristics of coated silicone textured versus smooth breast implants differentially influence breast-derived fibroblast morphology and behaviour.
    Valencia-Lazcano AA; Alonso-Rasgado T; Bayat A
    J Mech Behav Biomed Mater; 2014 Dec; 40():140-155. PubMed ID: 25238227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro.
    Hu Y; Winn SR; Krajbich I; Hollinger JO
    J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous analysis of multiple serum proteins adhering to the surface of medical grade polydimethylsiloxane elastomers.
    Backovic A; Wolfram D; Del-Frari B; Piza H; Huber LA; Wick G
    J Immunol Methods; 2007 Dec; 328(1-2):118-27. PubMed ID: 17920619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo.
    Brunette DM; Chehroudi B
    J Biomech Eng; 1999 Feb; 121(1):49-57. PubMed ID: 10080089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft tissue response to microtextured silicone and poly-L-lactic acid implants: fibronectin pre-coating vs. radio-frequency glow discharge treatment.
    Parker JA; Walboomers XF; Von den HJ; Maltha JC; Jansen JA
    Biomaterials; 2002 Sep; 23(17):3545-53. PubMed ID: 12109678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.