These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7654632)

  • 21. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces.
    Zhu X; Chen J; Scheideler L; Altebaeumer T; Geis-Gerstorfer J; Kern D
    Cells Tissues Organs; 2004; 178(1):13-22. PubMed ID: 15550756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants.
    Bacakova L; Filova E; Parizek M; Ruml T; Svorcik V
    Biotechnol Adv; 2011; 29(6):739-67. PubMed ID: 21821113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatibility evaluation of 3 facial silicone elastomers.
    França DC; de Castro AL; Soubhia AM; Tucci R; de Aguiar SM; Goiato MC
    J Craniofac Surg; 2011 May; 22(3):837-40. PubMed ID: 21558944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins.
    Mata A; Su X; Fleischman AJ; Roy S; Banks BA; Miller SK; Midura RJ
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):287-94. PubMed ID: 15376920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibroblast adhesion and activation onto micro-machined titanium surfaces.
    Guillem-Marti J; Delgado L; Godoy-Gallardo M; Pegueroles M; Herrero M; Gil FJ
    Clin Oral Implants Res; 2013 Jul; 24(7):770-80. PubMed ID: 22458450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling cellular activity by manipulating silicone surface roughness.
    Prasad BR; Brook MA; Smith T; Zhao S; Chen Y; Sheardown H; D'souza R; Rochev Y
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):237-42. PubMed ID: 20363600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platelet adhesion and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces.
    Hsiue GH; Lee SD; Chang PC
    J Biomater Sci Polym Ed; 1996; 7(10):839-55. PubMed ID: 8836831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A light and electron microscopic study of the effects of surface topography on the behavior of cells attached to titanium-coated percutaneous implants.
    Chehroudi B; Gould TR; Brunette DM
    J Biomed Mater Res; 1991 Mar; 25(3):387-405. PubMed ID: 2026643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro multi-parametric approach to measuring the effect of implant surface characteristics on cell behaviour.
    Davies JT; Lam J; Tomlins PE; Marshall D
    Biomed Mater; 2010 Feb; 5(1):15002. PubMed ID: 20057015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo.
    Chehroudi B; Gould TR; Brunette DM
    J Biomed Mater Res; 1989 Sep; 23(9):1067-85. PubMed ID: 2777834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea.
    Hsiue GH; Lee SD; Chang PC
    Artif Organs; 1996 Nov; 20(11):1196-207. PubMed ID: 8908330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement in cell proliferation on silicone rubber by carbon nanotube coating.
    Matsuoka M; Akasaka T; Hashimoto T; Totsuka Y; Watari F
    Biomed Mater Eng; 2009; 19(2-3):155-62. PubMed ID: 19581709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients.
    Kim DH; Han K; Gupta K; Kwon KW; Suh KY; Levchenko A
    Biomaterials; 2009 Oct; 30(29):5433-44. PubMed ID: 19595452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatibility and the efficacy of medical implants.
    Shard AG; Tomlins PE
    Regen Med; 2006 Nov; 1(6):789-800. PubMed ID: 17465760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced biocompatibility for SAOS-2 osteosarcoma cells by surface coating with hydrophobic epoxy resins.
    Geckeler K; Wacker R; Martini F; Hack A; Aicher W
    Cell Physiol Biochem; 2003; 13(3):155-64. PubMed ID: 12876386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge.
    Lee SD; Hsiue GH; Kao CY; Chang PC
    Biomaterials; 1996 Mar; 17(6):587-95. PubMed ID: 8652777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Control of Protein and Cell Interaction with Nanostructured Surfaces by Cluster Assembling.
    Schulte C; Podestà A; Lenardi C; Tedeschi G; Milani P
    Acc Chem Res; 2017 Feb; 50(2):231-239. PubMed ID: 28116907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodontal-like gingival connective tissue attachment on titanium surface with nano-ordered spikes and pores created by alkali-heat treatment.
    Kato E; Sakurai K; Yamada M
    Dent Mater; 2015 May; 31(5):e116-30. PubMed ID: 25698416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface.
    Kabaso D; Gongadze E; Perutková S; Matschegewski C; Kralj-Iglic V; Beck U; van Rienen U; Iglic A
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):469-82. PubMed ID: 21516531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.