These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7654752)

  • 41. Interaction of membrane surface charges with the reconstituted ADP/ATP-carrier from mitochondria.
    Krämer R
    Biochim Biophys Acta; 1983 Oct; 735(1):145-59. PubMed ID: 6313053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings.
    Di Martino C; Pizzuto R; Pallotta ML; De Santis A; Passarella S
    Planta; 2006 May; 223(6):1123-33. PubMed ID: 16322984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proline transport in rat kidney mitochondria.
    Atlante A; Passarella S; Pierro P; Quagliariello E
    Arch Biochem Biophys; 1994 Feb; 309(1):139-48. PubMed ID: 7906935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and functional reconstitution of the aspartate/glutamate carrier from mitochondria.
    Krämer R; Kürzinger G; Heberger C
    Arch Biochem Biophys; 1986 Nov; 251(1):166-74. PubMed ID: 3789731
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl.
    Brustovetsky N; Klingenberg M
    J Biol Chem; 1994 Nov; 269(44):27329-36. PubMed ID: 7961643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and functional aspects of the phosphate carrier from mitochondria.
    Krämer R
    Kidney Int; 1996 Apr; 49(4):947-52. PubMed ID: 8691742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.
    Helms HC; Madelung R; Waagepetersen HS; Nielsen CU; Brodin B
    Glia; 2012 May; 60(6):882-93. PubMed ID: 22392649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AGC1/2, the mitochondrial aspartate-glutamate carriers.
    Amoedo ND; Punzi G; Obre E; Lacombe D; De Grassi A; Pierri CL; Rossignol R
    Biochim Biophys Acta; 2016 Oct; 1863(10):2394-412. PubMed ID: 27132995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement.
    Atlante A; Passarella S; Pierro P; Di Martino C; Quagliariello E
    Eur J Biochem; 1996 Oct; 241(1):171-7. PubMed ID: 8898903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of glutamine-efflux from liver mitochondria loaded with the 14C-Labeled substrate.
    Kovacević Z; Bajin K
    Biochim Biophys Acta; 1982 May; 687(2):291-5. PubMed ID: 7093259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Net adenine nucleotide transport in rat kidney mitochondria.
    Hagen T; Joyal JL; Henke W; Aprille JR
    Arch Biochem Biophys; 1993 Jun; 303(2):195-207. PubMed ID: 8512308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport.
    Patel TB; Clark JB
    Biochem J; 1979 Dec; 184(3):539-46. PubMed ID: 540047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool.
    Yu X; White LT; Alpert NM; Lewandowski ED
    Biochemistry; 1996 May; 35(21):6963-8. PubMed ID: 8639648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of aspartate/glutamate antiporter in uncoupling effect of fatty acids in heart mitochondria.
    Samartsev VN; Zeldi IP; Mokhova EN
    Biochemistry (Mosc); 1998 May; 63(5):573-8. PubMed ID: 9632895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Mutation in the Mitochondrial Aspartate/Glutamate Carrier Leads to a More Oxidizing Intramitochondrial Environment and an Inflammatory Myopathy in Dutch Shepherd Dogs.
    Shelton GD; Minor KM; Li K; Naviaux JC; Monk J; Wang L; Guzik E; Guo LT; Porcelli V; Gorgoglione R; Lasorsa FM; Leegwater PJ; Persico AM; Mickelson JR; Palmieri L; Naviaux RK
    J Neuromuscul Dis; 2019; 6(4):485-501. PubMed ID: 31594244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The mitochondrial oxoglutarate carrier: sulfhydryl reagents bind to cysteine-184, and this interaction is enhanced by substrate binding.
    Capobianco L; Bisaccia F; Mazzeo M; Palmieri F
    Biochemistry; 1996 Jul; 35(27):8974-80. PubMed ID: 8688434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers.
    Chen Z; Lash LH
    J Pharmacol Exp Ther; 1998 May; 285(2):608-18. PubMed ID: 9580605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional properties of purified and reconstituted mitochondrial metabolite carriers.
    Palmieri F; Indiveri C; Bisaccia F; Krämer R
    J Bioenerg Biomembr; 1993 Oct; 25(5):525-35. PubMed ID: 8132492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical modification of the mitochondrial ornithine/citrulline carrier by SH reagents: effects on the transport activity and transition from carrier to pore-like function.
    Tonazzi A; Indiveri C
    Biochim Biophys Acta; 2003 Apr; 1611(1-2):123-30. PubMed ID: 12659953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia.
    Xu Y; Ola MS; Berkich DA; Gardner TW; Barber AJ; Palmieri F; Hutson SM; LaNoue KF
    J Neurochem; 2007 Apr; 101(1):120-31. PubMed ID: 17394462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.