These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 765479)

  • 21. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction].
    Katunin VI; Kirillov SV
    Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational changes in tRNA: consequences of aminoacylation and codon--anticodon recognition.
    Dvorak D; Kidson C; Winzor DJ
    FEBS Lett; 1978 Jun; 90(2):187-8. PubMed ID: 352721
    [No Abstract]   [Full Text] [Related]  

  • 23. Location of a platinum binding site in the structure of yeast phenylalanine transfer RNA.
    Rhodes D; Piper PW; Clark BF
    J Mol Biol; 1974 Nov; 89(3):469-75. PubMed ID: 4613862
    [No Abstract]   [Full Text] [Related]  

  • 24. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon.
    Geerdes HA; Van Boom JH; Hilbers CW
    J Mol Biol; 1980 Sep; 142(2):195-217. PubMed ID: 6160254
    [No Abstract]   [Full Text] [Related]  

  • 25. Destabilization of codon-anticodon interaction in the ribosomal exit site.
    Lill R; Wintermeyer W
    J Mol Biol; 1987 Jul; 196(1):137-48. PubMed ID: 2443714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA.
    Yamane T; Miller DL; Hopfield JJ
    Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aminoacids and the anticodon: anticodon interaction: a test of the stereochemical hypothesis?
    Labuda D; Grosjean H
    Biochimie; 1981 Jan; 63(1):77-81. PubMed ID: 7011423
    [No Abstract]   [Full Text] [Related]  

  • 29. The mechanism of codon-anticodon interaction in ribosomes. Quantitative study of codon-dependent binding of tRNA to the 30-S ribosomal subunits of Escherichia coli.
    Kirillov SV; Makhno VI; Semenkov YP
    Eur J Biochem; 1978 Aug; 89(1):297-304. PubMed ID: 359329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorimetric study of the complex between yeast phenylalanyl-tRNA synthetase and tRNA-Phe. 1. Changes in the conformation of the enzyme and tRNA; modification of the Wybutine neighbourhood.
    Ehrlich R; Lefevre JF; Remy P
    Eur J Biochem; 1980 Jan; 103(1):145-53. PubMed ID: 6987055
    [No Abstract]   [Full Text] [Related]  

  • 31. Transient kinetics of transfer ribonucleic acid binding to the ribosomal A and P sites: observation of a common intermediate complex.
    Wintermeyer W; Robertson JM
    Biochemistry; 1982 Apr; 21(9):2246-52. PubMed ID: 7046798
    [No Abstract]   [Full Text] [Related]  

  • 32. The kinetics of binding of U-U-C-A to a dodecanucleotide anticodon fragment from yeast tRNA-Phe.
    Yoon K; Turner DH; Tinoco I; Haar F; Cramer F
    Nucleic Acids Res; 1976 Sep; 3(9):2233-41. PubMed ID: 787934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of translation efficiency in yeast by codon-anticodon interactions.
    Letzring DP; Dean KM; Grayhack EJ
    RNA; 2010 Dec; 16(12):2516-28. PubMed ID: 20971810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis.
    Lake JA
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1903-7. PubMed ID: 266713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multistep mechanism of codon recognition by transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1980 Aug; 19(16):3799-805. PubMed ID: 7407070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria.
    Martin RP; Schneller JM; Stahl AJ; Dirheimer G
    Biochemistry; 1979 Oct; 18(21):4600-5. PubMed ID: 387075
    [No Abstract]   [Full Text] [Related]  

  • 37. Codon-acticodon recognition in the valine codon family.
    Mitra SK; Lustig F; Akesson B; Lagerkvist U
    J Biol Chem; 1977 Jan; 252(2):471-8. PubMed ID: 319094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic studies of transfer ribonucleic acids. II. Characterization of the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid.
    Levy J; Rialdi G; Biltonen R
    Biochemistry; 1972 Oct; 11(22):4138-44. PubMed ID: 4628736
    [No Abstract]   [Full Text] [Related]  

  • 40. Use of purified isoacceptor tRNAs for the study of codon-anticodon recognition in vitro with sequenced natural messenger RNA.
    Goldman E; Hatfield GW
    Methods Enzymol; 1979; 59():292-309. PubMed ID: 374943
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.