These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7654848)

  • 1. A theory for cursive handwriting based on the minimization principle.
    Wada Y; Kawato M
    Biol Cybern; 1995 Jun; 73(1):3-13. PubMed ID: 7654848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational theory for movement pattern recognition based on optimal movement pattern generation.
    Wada Y; Koike Y; Vatikiotis-Bateson E; Kawato M
    Biol Cybern; 1995 Jun; 73(1):15-25. PubMed ID: 7654846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A via-point time optimization algorithm for complex sequential trajectory formation.
    Wada Y; Kawato M
    Neural Netw; 2004 Apr; 17(3):353-64. PubMed ID: 15037353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurocomputing aspects in modelling cursive handwriting.
    Morasso P; Sanguineti V
    Acta Psychol (Amst); 1993 Mar; 82(1-3):213-35. PubMed ID: 8475767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Neuroscience of cursive handwriting: a computational appraoch].
    Fukuzawa K; Tsunoda S; Koike Y; Wada Y
    Rinsho Shinkeigaku; 2006 Nov; 46(11):914-6. PubMed ID: 17432218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion.
    Kawato M; Maeda Y; Uno Y; Suzuki R
    Biol Cybern; 1990; 62(4):275-88. PubMed ID: 2310782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical encoding of cursive handwriting.
    Singer Y; Tishby N
    Biol Cybern; 1994; 71(3):227-37. PubMed ID: 7918801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of handwriting.
    Edelman S; Flash T
    Biol Cybern; 1987; 57(1-2):25-36. PubMed ID: 3620543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of isochrony phenomenon based on the computational theory of human arm trajectory planning.
    Yokoyama H; Saito H; Kurai R; Nambu I; Wada Y
    Hum Mov Sci; 2018 Oct; 61():52-62. PubMed ID: 30015096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cursive word recognition based on interactive activation and early visual processing models.
    Ruiz-Pinales J; Jaime-Rivas R; Lecolinet E; Castro-Bleda MJ
    Int J Neural Syst; 2008 Oct; 18(5):419-31. PubMed ID: 18991364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A template-matching pandemonium recognizes unconstrained handwritten characters with high accuracy.
    Larsen A; Bundesen C
    Mem Cognit; 1996 Mar; 24(2):136-43. PubMed ID: 8881318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual control of automated handwriting movements.
    Marquardt C; Gentz W; Mai N
    Exp Brain Res; 1999 Sep; 128(1-2):224-8. PubMed ID: 10473764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recurrent neural network for partitioning of hand drawn characters into strokes of different orientations.
    Goltsev A; Rachkovskij D
    Int J Neural Syst; 2001 Oct; 11(5):463-75. PubMed ID: 11709813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of handwritten similar Chinese characters by self-growing probabilistic decision-based neural network.
    Fu HC; Xu YY; Chang HY
    Int J Neural Syst; 1999 Dec; 9(6):545-61. PubMed ID: 10651336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory formation and handwriting: a computational model.
    Morasso P; Mussa Ivaldi FA
    Biol Cybern; 1982; 45(2):131-42. PubMed ID: 7138957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian action-perception computational model: interaction of production and recognition of cursive letters.
    Gilet E; Diard J; Bessière P
    PLoS One; 2011; 6(6):e20387. PubMed ID: 21674043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.