These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7654955)

  • 1. Continuous delivery of azidothymidine by hydroxyapatite or tricalcium phosphate ceramics.
    Cannon MR; Bajpai PK
    Biomed Sci Instrum; 1995; 31():159-64. PubMed ID: 7654955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a ceramic matrix system for continuous delivery of azidothymidine.
    Nagy EA; Bajpai PK
    Biomed Sci Instrum; 1994; 30():181-6. PubMed ID: 7948634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term sustained delivery of 3'-azido-2',3'-dideoxythymidine in vivo by means of HA and TCP delivery devices.
    Benghuzzi H
    Biomed Sci Instrum; 2000; 36():343-8. PubMed ID: 10834256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro release of azidothymidine (AZT) by ceramic drug delivery systems.
    Benghuzzi HA; Barbaro RM; Bajpai PK
    Biomed Sci Instrum; 1990; 26():151-6. PubMed ID: 2334759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite-oil composites for delivering AZT in simulated body fluid.
    Reed D; Billotte WG; Rush BJ; Odorzynski A; Kreinbrink K; Bajpai PK
    Biomed Sci Instrum; 1997; 34():59-64. PubMed ID: 9603013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of fibrous tissue formation surrounding intraperitoneal and subcutaneous implantation of ALCAP, HA, and TCP ceramic devices.
    Butler K; Benghuzzi H; Tucci M; Cason Z
    Biomed Sci Instrum; 1997; 34():18-23. PubMed ID: 9603006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled release of hydrophilic compounds by resorbable and biodegradable ceramic drug delivery devices.
    Benghuzzi HA; England BG; Bajpai PK
    Biomed Sci Instrum; 1992; 28():179-82. PubMed ID: 1322731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ceramic system for continuous release of acetylsalicylic acid.
    Moldovan KM; Bajpai PK
    Biomed Sci Instrum; 1994; 30():175-80. PubMed ID: 7948633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo delivery of estradiol from ceramic drug delivery devices.
    Benghuzzi HA; England BG; Bajpai PK
    Biomed Sci Instrum; 1991; 27():181-7. PubMed ID: 2065153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydroxyapatite system for the continuous release of coumadin an anticoagulant.
    Tarr ER; Lasserre A; Szmulowicz U; Bajpai PK
    Biomed Sci Instrum; 1997; 33():143-8. PubMed ID: 9731350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successful antidote of multiple lethal infections using sustained delivery of difluoromethylornithine by means of ceramic drug delivery devices.
    Benghuzzi HA; England BG; Bajpai PK; Giffin BF
    Clin Mater; 1994; 15(3):151-60. PubMed ID: 10147210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite ceramics for continuous delivery of heparin.
    Abrams L; Bajpai PK
    Biomed Sci Instrum; 1994; 30():169-74. PubMed ID: 7948632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate.
    Matsushima A; Kotobuki N; Tadokoro M; Kawate K; Yajima H; Takakura Y; Ohgushi H
    Artif Organs; 2009 Jun; 33(6):474-81. PubMed ID: 19473144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ceramic drug delivery devices: the effect of various temperature of incubation on the delivery of biologicals.
    Benghuzzi HA; England BG; Bajpai PK
    Biomed Sci Instrum; 1992; 28():129-34. PubMed ID: 1643216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental study of the effect of new bone formation on new type artificial bone composed of bioactive ceramics].
    Zhu M; Zeng Y; Sun T; Peng Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):174-7. PubMed ID: 15828468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a hydroxyapatite ceramic matrix for the continuous delivery of coumadin.
    Mileti IF; Bajpai PK
    Biomed Sci Instrum; 1995; 31():177-82. PubMed ID: 7654958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.