BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 7655879)

  • 1. On the mechanisms underlying hypoxia-induced membrane depolarization in striatal neurons.
    Calabresi P; Pisani A; Mercuri NB; Bernardi G
    Brain; 1995 Aug; 118 ( Pt 4)():1027-38. PubMed ID: 7655879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-induced electrical changes in striatal neurons.
    Calabresi P; Pisani A; Mercuri NB; Bernardi G
    J Cereb Blood Flow Metab; 1995 Nov; 15(6):1141-5. PubMed ID: 7593348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological inhibition of the Na(+)/Ca(2+) exchanger enhances depolarizations induced by oxygen/glucose deprivation but not responses to excitatory amino acids in rat striatal neurons.
    Calabresi P; Marfia GA; Amoroso S; Pisani A; Bernardi G
    Stroke; 1999 Aug; 30(8):1687-94. PubMed ID: 10436122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons.
    Calabresi P; Marfia GA; Centonze D; Pisani A; Bernardi G
    Stroke; 1999 Jan; 30(1):171-9. PubMed ID: 9880406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.
    Tanaka E; Yamamoto S; Kudo Y; Mihara S; Higashi H
    J Neurophysiol; 1997 Aug; 78(2):891-902. PubMed ID: 9307122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase.
    Calabresi P; De Murtas M; Pisani A; Stefani A; Sancesario G; Mercuri NB; Bernardi G
    Eur J Neurosci; 1995 Aug; 7(8):1674-83. PubMed ID: 7582122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia.
    Le Corronc H; Hue B; Pitman RM
    J Neurophysiol; 1999 Jan; 81(1):307-18. PubMed ID: 9914291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.
    Yamamoto S; Tanaka E; Shoji Y; Kudo Y; Inokuchi H; Higashi H
    J Neurophysiol; 1997 Aug; 78(2):903-11. PubMed ID: 9307123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation.
    Pisani A; Calabresi P; Centonze D; Marfia GA; Bernardi G
    J Neurophysiol; 1999 May; 81(5):2508-16. PubMed ID: 10322086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat.
    Haddad GG; Donnelly DF
    J Physiol; 1990 Oct; 429():411-28. PubMed ID: 2126043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones.
    Barrett EF; Barret JN
    J Physiol; 1976 Mar; 255(3):737-74. PubMed ID: 1083431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposite membrane potential changes induced by glucose deprivation in striatal spiny neurons and in large aspiny interneurons.
    Calabresi P; Ascone CM; Centonze D; Pisani A; Sancesario G; D'Angelo V; Bernardi G
    J Neurosci; 1997 Mar; 17(6):1940-9. PubMed ID: 9045723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro.
    Kombian SB; Reiffenstein RJ; Colmers WF
    J Neurophysiol; 1993 Jul; 70(1):81-96. PubMed ID: 8395590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1997 Apr; 77(4):1829-43. PubMed ID: 9114239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons.
    Pisani A; Calabresi P; Tozzi A; D'Angelo V; Bernardi G
    Stroke; 1998 Jan; 29(1):196-201; discussion 202. PubMed ID: 9445351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a barium-sensitive outward current following glutamate application on rat midbrain dopaminergic cells.
    Mercuri NB; Bonci A; Calabresi P; Bernardi G
    Eur J Neurosci; 1996 Aug; 8(8):1780-6. PubMed ID: 8921268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease.
    Calabresi P; Mercuri NB; Sancesario G; Bernardi G
    Brain; 1993 Apr; 116 ( Pt 2)():433-52. PubMed ID: 8096420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons.
    Calabresi P; Centonze D; Marfia GA; Pisani A; Bernardi G
    Br J Pharmacol; 1999 Feb; 126(3):689-96. PubMed ID: 10188980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses.
    Calabresi P; Centonze D; Pisani A; Bernardi G
    J Neurosci; 1997 Jun; 17(12):4509-16. PubMed ID: 9169511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.