These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7656034)

  • 41. Recognition of nonconserved bases in the P22 operator by P22 repressor requires specific interactions between repressor and conserved bases.
    Hilchey SP; Wu L; Koudelka GB
    J Biol Chem; 1997 Aug; 272(32):19898-905. PubMed ID: 9242655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Feeling the groove.
    Riddihough G
    Nature; 1994 Mar; 368(6466):82. PubMed ID: 8107890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amino acid-amino acid contacts at the cooperativity interface of the bacteriophage lambda and P22 repressors.
    Whipple FW; Hou EF; Hochschild A
    Genes Dev; 1998 Sep; 12(17):2791-802. PubMed ID: 9732276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochemical and genetic analysis of operator contacts made by residues within the beta-sheet DNA binding motif of Mnt repressor.
    Knight KL; Sauer RT
    EMBO J; 1992 Jan; 11(1):215-23. PubMed ID: 1740107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the operator-binding domain of bacteriophage lambda repressor: implications for DNA recognition and gene regulation.
    Lewis M; Jeffrey A; Wang J; Ladner R; Ptashne M; Pabo CO
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():435-40. PubMed ID: 6305562
    [No Abstract]   [Full Text] [Related]  

  • 46. Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding.
    Bell CE; Frescura P; Hochschild A; Lewis M
    Cell; 2000 Jun; 101(7):801-11. PubMed ID: 10892750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex.
    Zacharias M; Luty BA; Davis ME; McCammon JA
    J Mol Biol; 1994 May; 238(3):455-65. PubMed ID: 8176736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor.
    Deb S; Bandyopadhyay S; Roy S
    Biochemistry; 2000 Mar; 39(12):3377-83. PubMed ID: 10727231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure of an engineered Cro monomer bound nonspecifically to DNA: possible implications for nonspecific binding by the wild-type protein.
    Albright RA; Mossing MC; Matthews BW
    Protein Sci; 1998 Jul; 7(7):1485-94. PubMed ID: 9684880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular dynamics simulation reveals sequence-intrinsic and protein-induced geometrical features of the OL1 DNA operator.
    Kombo DC; McConnell KJ; Young MA; Beveridge DL
    Biopolymers; 2001 Oct; 59(4):205-25. PubMed ID: 11473347
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA binding specificity of the Arc and Mnt repressors is determined by a short region of N-terminal residues.
    Knight KL; Sauer RT
    Proc Natl Acad Sci U S A; 1989 Feb; 86(3):797-801. PubMed ID: 2644643
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequence-dependent differences in DNA structure influence the affinity of P22 operator for P22 repressor.
    Wu L; Koudelka GB
    J Biol Chem; 1993 Sep; 268(25):18975-81. PubMed ID: 8395522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulation in solvent of the bacteriophage 434 cI repressor protein DNA binding domain amino acids (R1-69) in complex with its cognate operator (OR1) DNA sequence.
    Harris LF; Sullivan MR; Popken-Harris PD
    J Biomol Struct Dyn; 1999 Aug; 17(1):1-17. PubMed ID: 10496417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Operator binding by lambda repressor heterodimers with one or two N-terminal arms.
    Kim YI; Hu JC
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7510-4. PubMed ID: 7638221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of the bacteriophage P22 Arc repressor with operator DNA.
    Vershon AK; Liao SM; McClure WR; Sauer RT
    J Mol Biol; 1987 May; 195(2):323-31. PubMed ID: 3656415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specificity determinants for the interaction of lambda repressor and P22 repressor dimers.
    Whipple FW; Kuldell NH; Cheatham LA; Hochschild A
    Genes Dev; 1994 May; 8(10):1212-23. PubMed ID: 7926725
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dimerization specificity of P22 and 434 repressors is determined by multiple polypeptide segments.
    Donner AL; Carlson PA; Koudelka GB
    J Bacteriol; 1997 Feb; 179(4):1253-61. PubMed ID: 9023209
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ban operon of bacteriophage P1. Mutational analysis of the c1 repressor-controlled operator.
    Heinzel T; Velleman M; Schuster H
    J Mol Biol; 1989 Jan; 205(1):127-35. PubMed ID: 2647997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing the physical basis for trp repressor-operator recognition.
    Grillo AO; Brown MP; Royer CA
    J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein stabilization by removal of unsatisfied polar groups: computational approaches and experimental tests.
    Hendsch ZS; Jonsson T; Sauer RT; Tidor B
    Biochemistry; 1996 Jun; 35(24):7621-5. PubMed ID: 8672461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.