These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 7657546)
1. Effect of prior oxygen exposure on the electroretinographic responses of infant rats. Reynaud X; Hansen RM; Fulton AB Invest Ophthalmol Vis Sci; 1995 Sep; 36(10):2071-9. PubMed ID: 7657546 [TBL] [Abstract][Full Text] [Related]
2. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Liu K; Akula JD; Falk C; Hansen RM; Fulton AB Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2639-47. PubMed ID: 16723481 [TBL] [Abstract][Full Text] [Related]
3. Development of the electroretinographic oscillatory potentials in normal and ROP rats. Liu K; Akula JD; Hansen RM; Moskowitz A; Kleinman MS; Fulton AB Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5447-52. PubMed ID: 17122135 [TBL] [Abstract][Full Text] [Related]
4. Rod photoreceptors in infant rats with a history of oxygen exposure. Fulton AB; Reynaud X; Hansen RM; Lemere CA; Parker C; Williams TP Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):168-74. PubMed ID: 9888440 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a brief period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy. Dembinska O; Rojas LM; Chemtob S; Lachapelle P Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2481-90. PubMed ID: 12091454 [TBL] [Abstract][Full Text] [Related]
6. The effects of acetazolamide on the electroretinographic responses in rats. Findl O; Hansen RM; Fulton AB Invest Ophthalmol Vis Sci; 1995 May; 36(6):1019-26. PubMed ID: 7730011 [TBL] [Abstract][Full Text] [Related]
7. The development of the rod photoresponse from dark-adapted rats. Fulton AB; Hansen RM; Findl O Invest Ophthalmol Vis Sci; 1995 May; 36(6):1038-45. PubMed ID: 7730013 [TBL] [Abstract][Full Text] [Related]
8. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Akula JD; Hansen RM; Martinez-Perez ME; Fulton AB Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4351-9. PubMed ID: 17724227 [TBL] [Abstract][Full Text] [Related]
10. Graded contribution of retinal maturation to the development of oxygen-induced retinopathy in rats. Dembinska O; Rojas LM; Varma DR; Chemtob S; Lachapelle P Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1111-8. PubMed ID: 11274093 [TBL] [Abstract][Full Text] [Related]
11. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats. Sugawara T; Sieving PA; Bush RA Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional consequences of trolox C treatment in the rat model of postnatal hyperoxia. Dorfman AL; Dembinska O; Chemtob S; Lachapelle P Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1101-8. PubMed ID: 16505047 [TBL] [Abstract][Full Text] [Related]
13. Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Dorfman A; Dembinska O; Chemtob S; Lachapelle P Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):458-66. PubMed ID: 18172126 [TBL] [Abstract][Full Text] [Related]
14. Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. van Wijngaarden P; Coster DJ; Brereton HM; Gibbins IL; Williams KA Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1445-52. PubMed ID: 15790914 [TBL] [Abstract][Full Text] [Related]
15. Functional changes in rod and cone pathways after photoreceptor loss in light-damaged rats. Takahashi T; Machida S; Masuda T; Mukaida Y; Tazawa Y Curr Eye Res; 2005 Aug; 30(8):703-13. PubMed ID: 16109651 [TBL] [Abstract][Full Text] [Related]
16. Development of electroretinogram and rod phototransduction response in human infants. Breton ME; Quinn GE; Schueller AW Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1588-602. PubMed ID: 7601640 [TBL] [Abstract][Full Text] [Related]
17. Significant reduction of the panretinal oxygenation response after 28% supplemental oxygen recovery in experimental ROP. Berkowitz BA; Zhang W Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1925-31. PubMed ID: 10845618 [TBL] [Abstract][Full Text] [Related]
18. Increased ERG a- and b-wave amplitudes in 7- to 10-year-old children resulting from prenatal lead exposure. Rothenberg SJ; Schnaas L; Salgado-Valladares M; Casanueva E; Geller AM; Hudnell HK; Fox DA Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):2036-44. PubMed ID: 12037016 [TBL] [Abstract][Full Text] [Related]
19. Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. Fox DA; Campbell ML; Blocker YS Neurotoxicology; 1997; 18(3):645-64. PubMed ID: 9339814 [TBL] [Abstract][Full Text] [Related]
20. [Ultra structure of retinopathy induced by hyperoxia in developing rats]. Rojas LM; Benitez K; Suárez SM; Boada-Sucre A; Ramírez Y; Romero MA; Hernández G Rev Invest Clin; 2005; 57(6):794-801. PubMed ID: 16708905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]