These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 7657623)

  • 1. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor.
    Triana-Alonso FJ; Chakraburtty K; Nierhaus KH
    J Biol Chem; 1995 Sep; 270(35):20473-8. PubMed ID: 7657623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of yeast elongation factor 3 in the elongation cycle.
    Kamath A; Chakraburtty K
    J Biol Chem; 1989 Sep; 264(26):15423-8. PubMed ID: 2670939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer RNA binding to 80S ribosomes from yeast: evidence for three sites.
    Triana F; Nierhaus KH; Chakraburtty K
    Biochem Mol Biol Int; 1994 Aug; 33(5):909-15. PubMed ID: 7987260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of yeast peptide elongation factor 3 (EF-3) at the AA-tRNA binding step.
    Uritani M; Miyazaki M
    J Biochem; 1988 Jul; 104(1):118-26. PubMed ID: 3065333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of yeast elongation factor 3 with polynucleotides, ribosomal RNA and ribosomal subunits.
    Kovalchuke O; Chakraburtty K
    Indian J Biochem Biophys; 1995 Dec; 32(6):336-42. PubMed ID: 8714201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation.
    Ranjan N; Pochopien AA; Chih-Chien Wu C; Beckert B; Blanchet S; Green R; V Rodnina M; Wilson DN
    EMBO J; 2021 Mar; 40(6):e106449. PubMed ID: 33555093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble factor requirements for the Tetrahymena peptide elongation system and the ribosomal ATPase as a counterpart of yeast elongation factor 3 (EF-3).
    Miyazaki M; Kagiyama H
    J Biochem; 1990 Dec; 108(6):1001-8. PubMed ID: 2150964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interaction of yeast elongation factor 3 with yeast ribosomes.
    Chakraburtty K
    Int J Biochem Cell Biol; 1999 Jan; 31(1):163-73. PubMed ID: 10216951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of ribosome-associated adenosinetriphosphatase (ATPase) from pig liver and the ATPase of elongation factor 3 from Saccharomyces cerevisiae.
    Kovalchuke O; Chakraburtty K
    Eur J Biochem; 1994 Nov; 226(1):133-40. PubMed ID: 7957240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous, elongation factor G independent translocation of Escherichia coli ribosomes.
    Bergemann K; Nierhaus KH
    J Biol Chem; 1983 Dec; 258(24):15105-13. PubMed ID: 6361027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA.
    Borowski C; Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4202-6. PubMed ID: 8633041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide and aminoacyl-tRNA specificity of the mammalian mitochondrial elongation factor EF-Tu.Ts complex.
    Woriax VL; Spremulli GH; Spremulli LL
    Biochim Biophys Acta; 1996 Jun; 1307(1):66-72. PubMed ID: 8652669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the 3' terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation.
    Lill R; Robertson JM; Wintermeyer W
    EMBO J; 1989 Dec; 8(12):3933-8. PubMed ID: 2583120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein?
    Belfield GP; Ross-Smith NJ; Tuite MF
    J Mol Evol; 1995 Sep; 41(3):376-87. PubMed ID: 7563124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three tRNA binding sites in rabbit liver ribosomes and role of the intrinsic ATPase in 80S ribosomes from higher eukaryotes.
    El'skaya AV; Ovcharenko GV; Palchevskii SS; Petrushenko ZM; Triana-Alonso FJ; Nierhaus KH
    Biochemistry; 1997 Aug; 36(34):10492-7. PubMed ID: 9265629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Distribution and Ribosome-Binding Dynamics of EF-P in Live
    Mohapatra S; Choi H; Ge X; Sanyal S; Weisshaar JC
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588135
    [No Abstract]   [Full Text] [Related]  

  • 17. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent association constants of tRNAs for the ribosomal A, P, and E sites.
    Schilling-Bartetzko S; Franceschi F; Sternbach H; Nierhaus KH
    J Biol Chem; 1992 Mar; 267(7):4693-702. PubMed ID: 1537852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs.
    Holschuh K; Gassen HG
    J Biol Chem; 1982 Feb; 257(4):1987-92. PubMed ID: 7035457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.
    Susorov D; Zakharov N; Shuvalova E; Ivanov A; Egorova T; Shuvalov A; Shatsky IN; Alkalaeva E
    J Biol Chem; 2018 Apr; 293(14):5220-5229. PubMed ID: 29453282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.