These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 7657626)
1. Removal of feedback inhibition of delta 1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. Zhang CS; Lu Q; Verma DP J Biol Chem; 1995 Sep; 270(35):20491-6. PubMed ID: 7657626 [TBL] [Abstract][Full Text] [Related]
2. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Hu CA; Delauney AJ; Verma DP Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9354-8. PubMed ID: 1384052 [TBL] [Abstract][Full Text] [Related]
3. Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. Aral B; Schlenzig JS; Liu G; Kamoun P C R Acad Sci III; 1996 Mar; 319(3):171-8. PubMed ID: 8761662 [TBL] [Abstract][Full Text] [Related]
4. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. Delauney AJ; Hu CA; Kishor PB; Verma DP J Biol Chem; 1993 Sep; 268(25):18673-8. PubMed ID: 8103048 [TBL] [Abstract][Full Text] [Related]
5. Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. Hu CA; Lin WW; Obie C; Valle D J Biol Chem; 1999 Mar; 274(10):6754-62. PubMed ID: 10037775 [TBL] [Abstract][Full Text] [Related]
6. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Hong Z; Lakkineni K; Zhang Z; Verma DP Plant Physiol; 2000 Apr; 122(4):1129-36. PubMed ID: 10759508 [TBL] [Abstract][Full Text] [Related]
7. Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Yoshiba Y; Kiyosue T; Katagiri T; Ueda H; Mizoguchi T; Yamaguchi-Shinozaki K; Wada K; Harada Y; Shinozaki K Plant J; 1995 May; 7(5):751-60. PubMed ID: 7773306 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Igarashi Y; Yoshiba Y; Sanada Y; Yamaguchi-Shinozaki K; Wada K; Shinozaki K Plant Mol Biol; 1997 Mar; 33(5):857-65. PubMed ID: 9106509 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase. Krishna RV; Beilstein P; Leisinger T Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173 [TBL] [Abstract][Full Text] [Related]
10. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Turchetto-Zolet AC; Margis-Pinheiro M; Margis R Mol Genet Genomics; 2009 Jan; 281(1):87-97. PubMed ID: 19002717 [TBL] [Abstract][Full Text] [Related]
11. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Peng Z; Lu Q; Verma DP Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320 [TBL] [Abstract][Full Text] [Related]
12. Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. Savouré A; Jaoua S; Hua XJ; Ardiles W; Van Montagu M; Verbruggen N FEBS Lett; 1995 Sep; 372(1):13-9. PubMed ID: 7556633 [TBL] [Abstract][Full Text] [Related]
13. Purification and properties of the bifunctional proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa. Meile L; Leisinger T Eur J Biochem; 1982 Dec; 129(1):67-75. PubMed ID: 6819140 [TBL] [Abstract][Full Text] [Related]
14. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Silva-Ortega CO; Ochoa-Alfaro AE; Reyes-Agüero JA; Aguado-Santacruz GA; Jiménez-Bremont JF Plant Physiol Biochem; 2008 Jan; 46(1):82-92. PubMed ID: 18054243 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Delta1-pyrroline-5-carboxylate synthetase from tomato. Fujita T; Maggio A; Garcia-Rios M; Bressan RA; Csonka LN Plant Physiol; 1998 Oct; 118(2):661-74. PubMed ID: 9765552 [TBL] [Abstract][Full Text] [Related]
16. Enzymology and Regulation of δ Sabbioni G; Funck D; Forlani G Front Plant Sci; 2021; 12():672702. PubMed ID: 34603346 [TBL] [Abstract][Full Text] [Related]
17. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Ku HM; Hu CC; Chang HJ; Lin YT; Jan FJ; Chen CT Plant Physiol Biochem; 2011 Oct; 49(10):1147-54. PubMed ID: 21831656 [TBL] [Abstract][Full Text] [Related]
18. Regulation of levels of proline as an osmolyte in plants under water stress. Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433 [TBL] [Abstract][Full Text] [Related]
19. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Pérez-Arellano I; Carmona-Alvarez F; Martínez AI; Rodríguez-Díaz J; Cervera J Protein Sci; 2010 Mar; 19(3):372-82. PubMed ID: 20091669 [TBL] [Abstract][Full Text] [Related]
20. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Zhang M; Huang H; Dai S Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]