These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7657661)
1. Role of glycine 1 and lysine 2 in the glycation of bovine gamma B-crystallin. Site-directed mutagenesis of lysine to threonine. Casey EB; Zhao HR; Abraham EC J Biol Chem; 1995 Sep; 270(35):20781-6. PubMed ID: 7657661 [TBL] [Abstract][Full Text] [Related]
2. The role of alpha- and epsilon-amino groups in the glycation-mediated cross-linking of gammaB-crystallin. Study of three site-directed mutants. Zhao HR; Nagaraj RH; Abraham EC J Biol Chem; 1997 May; 272(22):14465-9. PubMed ID: 9162088 [TBL] [Abstract][Full Text] [Related]
3. Identification of the site of glycation of gamma-II-crystallin by (14C)-fructose. Pennington J; Harding JJ Biochim Biophys Acta; 1994 May; 1226(2):163-7. PubMed ID: 8204663 [TBL] [Abstract][Full Text] [Related]
4. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions. Yan H; Willis AC; Harding JJ Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541 [TBL] [Abstract][Full Text] [Related]
5. Site-specific glycation of lens crystallins by ascorbic acid. Ortwerth BJ; Slight SH; Prabhakaram M; Sun Y; Smith JB Biochim Biophys Acta; 1992 Sep; 1117(2):207-15. PubMed ID: 1525182 [TBL] [Abstract][Full Text] [Related]
6. Comparison of modification sites in glycated crystallin in vitro and in vivo. Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230 [TBL] [Abstract][Full Text] [Related]
7. A spectroscopic study of glycated bovine alpha-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity and evidence for diglycation. Blakytny R; Carver JA; Harding JJ; Kilby GW; Sheil MM Biochim Biophys Acta; 1997 Dec; 1343(2):299-315. PubMed ID: 9434120 [TBL] [Abstract][Full Text] [Related]
8. Site selectivity in the glycation of alpha A- and alpha B-crystallins by glucose. Abraham EC; Cherian M; Smith JB Biochem Biophys Res Commun; 1994 Jun; 201(3):1451-6. PubMed ID: 7912928 [TBL] [Abstract][Full Text] [Related]
9. Lys-17 is the amine-donor substrate site for transglutaminase in beta A3-crystallin. Groenen PJ; Grootjans JJ; Lubsen NH; Bloemendal H; de Jong WW J Biol Chem; 1994 Jan; 269(2):831-3. PubMed ID: 7904603 [TBL] [Abstract][Full Text] [Related]
10. Aggregation of beta A3-crystallin is independent of the specific sequence of the domain connecting peptide. Hope JN; Chen HC; Hejtmancik JF J Biol Chem; 1994 Aug; 269(33):21141-5. PubMed ID: 8063735 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. Highbarger LA; Gerlt JA; Kenyon GL Biochemistry; 1996 Jan; 35(1):41-6. PubMed ID: 8555196 [TBL] [Abstract][Full Text] [Related]
12. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase beta subunit of Escherichia coli. Omote H; Maeda M; Futai M J Biol Chem; 1992 Oct; 267(29):20571-6. PubMed ID: 1400377 [TBL] [Abstract][Full Text] [Related]
13. Sequence analysis of frog alpha-crystallin cDNA and its deduced primary structure: comparison of alpha A subunit chains among different vertebrate species. Lu SF; Pan FM; Chiou SH Biochem Biophys Res Commun; 1995 May; 210(3):974-81. PubMed ID: 7763271 [TBL] [Abstract][Full Text] [Related]
14. The glycation and cross-linking of isolated lens crystallins by ascorbic acid. Prabhakaram M; Ortwerth BJ Exp Eye Res; 1992 Sep; 55(3):451-9. PubMed ID: 1426076 [TBL] [Abstract][Full Text] [Related]
15. The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB1 protein missing portions of its N-terminal extension. David LL; Lampi KJ; Lund AL; Smith JB J Biol Chem; 1996 Feb; 271(8):4273-9. PubMed ID: 8626774 [TBL] [Abstract][Full Text] [Related]
16. Characterization, cloning, and expression of porcine alpha B crystallin. Liao JH; Hung CC; Lee JS; Wu SH; Chiou SH Biochem Biophys Res Commun; 1998 Mar; 244(1):131-7. PubMed ID: 9514893 [TBL] [Abstract][Full Text] [Related]
17. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling. Salim A; Bano A; Zaidi ZH Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968 [TBL] [Abstract][Full Text] [Related]
18. Sites of glycation of beta B2-crystallin by glucose and fructose. Zhao HR; Smith JB; Jiang XY; Abraham EC Biochem Biophys Res Commun; 1996 Dec; 229(1):128-33. PubMed ID: 8954094 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of hydrophobic domain interactions in gamma B-crystallin from bovine eye lens. Palme S; Slingsby C; Jaenicke R Protein Sci; 1997 Jul; 6(7):1529-36. PubMed ID: 9232654 [TBL] [Abstract][Full Text] [Related]
20. Prevention of α-crystallin glycation and aggregation using l-lysine results in the inhibition of in vitro catalase heat-induced-aggregation and suppression of cataract formation in the diabetic rat. Bahmani F; Bathaie SZ; Aldavood SJ; Ghahghaei A Int J Biol Macromol; 2019 Jul; 132():1200-1207. PubMed ID: 30965074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]