These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 7657676)
1. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676 [TBL] [Abstract][Full Text] [Related]
2. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations. Groth KM; Granata KP J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Koeller W; Meier W; Hartmann F Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843 [TBL] [Abstract][Full Text] [Related]
4. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading. Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M Clin Biomech (Bristol); 2000 Mar; 15(3):167-75. PubMed ID: 10656978 [TBL] [Abstract][Full Text] [Related]
5. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846 [TBL] [Abstract][Full Text] [Related]
6. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Izambert O; Mitton D; Thourot M; Lavaste F Eur Spine J; 2003 Dec; 12(6):562-6. PubMed ID: 14605972 [TBL] [Abstract][Full Text] [Related]
7. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
8. Creep experimental study on the lumbar intervertebral disk under vibration compression load. Yang X; Cheng X; Luan Y; Liu Q; Zhang C Proc Inst Mech Eng H; 2019 Aug; 233(8):858-867. PubMed ID: 31203788 [TBL] [Abstract][Full Text] [Related]
9. Fatigue responses of the human cervical spine intervertebral discs. Yoganandan N; Umale S; Stemper B; Snyder B J Mech Behav Biomed Mater; 2017 May; 69():30-38. PubMed ID: 28033533 [TBL] [Abstract][Full Text] [Related]
10. Intervertebral disc response to cyclic loading--an animal model. Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Cheung JT; Zhang M; Chow DH Clin Biomech (Bristol); 2003 Nov; 18(9):790-9. PubMed ID: 14527805 [TBL] [Abstract][Full Text] [Related]
12. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs. Showalter BL; Malhotra NR; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2633-40. PubMed ID: 24957922 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Koeller W; Funke F; Hartmann F Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283 [TBL] [Abstract][Full Text] [Related]
14. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Araújo ÂR; Peixinho N; Pinho AC; Claro JC Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations. Kasra M; Shirazi-Adl A; Drouin G Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear behavior of the human intervertebral disc under axial load. Kulak RF; Belytschko TB; Schultz AB J Biomech; 1976; 9(6):377-86. PubMed ID: 932051 [No Abstract] [Full Text] [Related]
17. Nonlinear dynamics of the human lumbar intervertebral disc. Marini G; Huber G; Püschel K; Ferguson SJ J Biomech; 2015 Feb; 48(3):479-88. PubMed ID: 25573099 [TBL] [Abstract][Full Text] [Related]
18. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression]. Zhu S; Yang X; Luan Y; Liu Q; Zhang C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259 [TBL] [Abstract][Full Text] [Related]
19. Discogenic origins of spinal instability. Zhao F; Pollintine P; Hole BD; Dolan P; Adams MA Spine (Phila Pa 1976); 2005 Dec; 30(23):2621-30. PubMed ID: 16319748 [TBL] [Abstract][Full Text] [Related]
20. Quantification of intradiscal pressures below thoracolumbar spinal fusion constructs: is there evidence to support "saving a level"? Auerbach JD; Lonner BS; Errico TJ; Freeman A; Goerke D; Beaubien BP Spine (Phila Pa 1976); 2012 Mar; 37(5):359-66. PubMed ID: 21540780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]