These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 7659299)
41. Reduction in glial fibrillary acidic protein mRNA abundance induced by (-)-deprenyl and other monoamine oxidase B inhibitors in C6 glioma cells. Li XM; Qi J; Juorio AV; Boulton AA J Neurochem; 1993 Oct; 61(4):1573-6. PubMed ID: 8377010 [TBL] [Abstract][Full Text] [Related]
42. Basic fibroblast growth factor, neurofilament, and glial fibrillary acidic protein immunoreactivities in the myenteric plexus of the rat esophagus and colon. Chadi G; Gomide VC; Rodrigues de Souza R; Scabello RT; Maurício da Silva C J Morphol; 2004 Sep; 261(3):323-33. PubMed ID: 15281060 [TBL] [Abstract][Full Text] [Related]
43. Staurosporine induces astrocytic phenotypes and differential expression of specific PKC isoforms in C6 glial cells. Kronfeld I; Zsukerman A; Kazimirsky G; Brodie C J Neurochem; 1995 Oct; 65(4):1505-14. PubMed ID: 7561844 [TBL] [Abstract][Full Text] [Related]
44. Responses in primary astrocytes and C6-glioma cells to ammonium chloride and dibutyryl cyclic-AMP. Haghighat N; McCandless DW; Geraminegad P Neurochem Res; 2000 Feb; 25(2):277-84. PubMed ID: 10786713 [TBL] [Abstract][Full Text] [Related]
45. Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus-A comparison with labeling glutamic acid decarboxylase 67. Wang X; Gao F; Zhu J; Guo E; Song X; Wang S; Zhan RZ J Chem Neuroanat; 2014 Nov; 61-62():51-63. PubMed ID: 25058170 [TBL] [Abstract][Full Text] [Related]
46. MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase A pathway. Shu M; Zhou Y; Zhu W; Zhang H; Wu S; Chen J; Yan G Mol Pharmacol; 2012 Mar; 81(3):292-8. PubMed ID: 22172575 [TBL] [Abstract][Full Text] [Related]
47. Enhanced neuronal protection from oxidative stress by coculture with glutamic acid decarboxylase-expressing astrocytes. Lamigeon C; Bellier JP; Sacchettoni S; Rujano M; Jacquemont B J Neurochem; 2001 Apr; 77(2):598-606. PubMed ID: 11299322 [TBL] [Abstract][Full Text] [Related]
48. Testosterone attenuates morpho-functional alterations by 2-methoxyestradiol exposure and induces differentiation in C6 cells. Manca P; Chisu V J Cell Physiol; 2011 Jun; 226(6):1510-8. PubMed ID: 20945387 [TBL] [Abstract][Full Text] [Related]
49. Differentiation-dependent expression of transgenes in engineered astrocyte cell lines. Segovia J; Vergara P; Brenner M Neurosci Lett; 1998 Feb; 242(3):172-6. PubMed ID: 9530933 [TBL] [Abstract][Full Text] [Related]
50. Class III beta-tubulin isotype (beta III) in the adrenal medulla: III. Differential expression of neuronal and glial antigens identifies two distinct populations of neuronal and glial-like (sustentacular) cells in the PC12 rat pheochromocytoma cell line maintained in a Gelfoam matrix system. Katsetos CD; Herman MM; Balin BJ; Vinores SA; Hessler RB; Arking EJ; Karkavelas G; Frankfurter A Anat Rec; 1998 Mar; 250(3):351-65. PubMed ID: 9517852 [TBL] [Abstract][Full Text] [Related]
52. Inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cAMP-induced differentiation of rat C6 glial cell line. Takanaga H; Kunimoto M; Adachi T; Tohyama C; Aoki Y J Neurosci Res; 2001 May; 64(4):402-9. PubMed ID: 11340647 [TBL] [Abstract][Full Text] [Related]
53. Caveolin isoform expression during differentiation of C6 glioma cells. Silva WI; Maldonado HM; Velázquez G; Rubio-Dávila M; Miranda JD; Aquino E; Mayol N; Cruz-Torres A; Jardón J; Salgado-Villanueva IK Int J Dev Neurosci; 2005 Nov; 23(7):599-612. PubMed ID: 16135403 [TBL] [Abstract][Full Text] [Related]
54. Malignant gliomas can be converted to non‑proliferating glial cells by treatment with a combination of small molecules. Oh J; Kim Y; Baek D; Ha Y Oncol Rep; 2019 Jan; 41(1):361-368. PubMed ID: 30365111 [TBL] [Abstract][Full Text] [Related]
55. Inoculation of C6 cell suspension into the brain of adult rats: immunohistochemical study. Mokrý J; Nĕmecek S; Adler J; Dĕdic K Funct Dev Morphol; 1993; 3(3):175-80. PubMed ID: 8167397 [TBL] [Abstract][Full Text] [Related]
56. Expression of glial fibrillary acidic protein in rat C6 glioma relates to vimentin and is independent of cell-cell contact. Backhovens H; Gheuens J; Slegers H J Neurochem; 1987 Aug; 49(2):348-54. PubMed ID: 3037025 [TBL] [Abstract][Full Text] [Related]
57. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. Arochena M; Anadón R; Díaz-Regueira SM J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591 [TBL] [Abstract][Full Text] [Related]
58. Gene therapy in a rodent model of Parkinson's disease using differentiated C6 cells expressing a GFAP-tyrosine hydroxylase transgene. Trejo F; Vergara P; Brenner M; Segovia J Life Sci; 1999; 65(5):483-91. PubMed ID: 10462075 [TBL] [Abstract][Full Text] [Related]
59. Proenkephalin gene expression in C6 rat glioma cells: potentiation of cyclic adenosine 3',5'-monophosphate-dependent transcription by glucocorticoids. Joshi J; Sabol SL Mol Endocrinol; 1991 Aug; 5(8):1069-80. PubMed ID: 1658636 [TBL] [Abstract][Full Text] [Related]
60. Thyroid hormones reorganize the cytoskeleton of glial cells through Gfap phosphorylation and Rhoa-dependent mechanisms. Zamoner A; Funchal C; Jacques-Silva MC; Gottfried C; Barreto Silva FR; Pessoa-Pureur R Cell Mol Neurobiol; 2007 Nov; 27(7):845-65. PubMed ID: 17334943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]