These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 7659735)

  • 1. Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation.
    Hammer M; Roggan A; Schweitzer D; Müller G
    Phys Med Biol; 1995 Jun; 40(6):963-78. PubMed ID: 7659735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo modelling of the spectral reflectance of the human eye.
    Preece SJ; Claridge E
    Phys Med Biol; 2002 Aug; 47(16):2863-77. PubMed ID: 12222851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo model for studying the effects of melanin concentrations on retina light absorption.
    Guo Y; Yao G; Lei B; Tan J
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):304-11. PubMed ID: 18246163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical characterization of bovine retinal tissues.
    Sardar DK; Salinas FS; Perez JJ; Tsin AT
    J Biomed Opt; 2004; 9(3):624-31. PubMed ID: 15189102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraocular reflectance of the ocular fundus and its impact on increased retinal hazard.
    Fehler N; Lingenfelder C; Kupferschmid S; Hessling M
    Z Med Phys; 2022 Nov; 32(4):453-465. PubMed ID: 35618555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive measurement of the concentration of melanin, xanthophyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry.
    Hammer M; Schweitzer D; Thamm E; Kolb A
    Int Ophthalmol; 2001; 23(4-6):279-89. PubMed ID: 11944852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical characterization of melanin.
    Sardar DK; Mayo ML; Glickman RD
    J Biomed Opt; 2001 Oct; 6(4):404-11. PubMed ID: 11728198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of retinal oximetry: a Monte Carlo investigation.
    Liu W; Jiao S; Zhang HF
    J Biomed Opt; 2013 Jun; 18(6):066003. PubMed ID: 23733019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remarks on fundus reflectance.
    Ham WT
    Vision Res; 1975 Oct; 15():1167-8. PubMed ID: 1167201
    [No Abstract]   [Full Text] [Related]  

  • 10. The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in Mice Measured In Vivo With Scanning Laser Ophthalmoscopy.
    Zhang P; Goswami M; Zawadzki RJ; Pugh EN
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(8):3650-64. PubMed ID: 27403994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative reflection spectroscopy at the human ocular fundus.
    Hammer M; Schweitzer D
    Phys Med Biol; 2002 Jan; 47(2):179-91. PubMed ID: 11837611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point-spread function for light scattered in the human ocular fundus.
    Hodgkinson IJ; Greer PB; Molteno AC
    J Opt Soc Am A Opt Image Sci Vis; 1994 Feb; 11(2):479-86. PubMed ID: 8120696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized light and the human fundus oculi.
    Weale RA
    J Physiol; 1966 Sep; 186(1):175-86. PubMed ID: 5914251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of retinal light absorption by infants.
    Guo Y; Tan J
    J Opt Soc Am A Opt Image Sci Vis; 2015 Feb; 32(2):271-6. PubMed ID: 26366599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monochromatic ophthalmoscopy and fundus photography. The normal fundus.
    Delori FC; Gragoudas ES; Francisco R; Pruett RC
    Arch Ophthalmol; 1977 May; 95(5):861-8. PubMed ID: 860947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the retinal interphotoreceptor matrix Na by the retinal pigment epithelium during the light response.
    Hodson S; Armstrong I; Wigham C
    Experientia; 1994 May; 50(5):438-41. PubMed ID: 8194579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength dependence of the Stiles-Crawford effect explained by perception of backscattered light from the choroid.
    Berendschot TJ; van de Kraats J; van Norren D
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1445-51. PubMed ID: 11444534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sveinsson chorioretinal atrophy: the mildest changes are located in the photoreceptor outer segment/retinal pigment epithelium junction.
    Jonasson F; Sander B; Eysteinsson T; Jörgensen T; Klintworth GK
    Acta Ophthalmol Scand; 2007 Dec; 85(8):862-7. PubMed ID: 17683515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in tissue optical properties due to radio-frequency ablation of myocardium.
    Swartling J; Pålsson S; Platonov P; Olsson SB; Andersson-Engels S
    Med Biol Eng Comput; 2003 Jul; 41(4):403-9. PubMed ID: 12892362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique.
    Simpson CR; Kohl M; Essenpreis M; Cope M
    Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.