These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 7659837)
1. Kinetic analysis of impaired work-cost performance in jaundiced rabbit liver. Tanaka A; Feng Z; Inomoto T; Mori S; Tokuka A; Shinohara H; Kataoka M; Yamaoka Y; Ozawa K Res Exp Med (Berl); 1995; 195(2):77-84. PubMed ID: 7659837 [TBL] [Abstract][Full Text] [Related]
2. A role of cytoplasmic free adenosine diphosphate in regenerating rabbit liver. Kataoka M; Tanaka A; Yamaoka Y; Egawa H; Yamaguchi T; Takada Y; Ozawa K J Lab Clin Med; 1992 Apr; 119(4):354-8. PubMed ID: 1583384 [TBL] [Abstract][Full Text] [Related]
3. Early metabolic disturbances in the liver following unilateral hepatic or common bile duct obstruction in rabbits. Ozawa K; Tanaka J; Ukigusa M; Kimura K; Tobe T Eur Surg Res; 1979; 11(1):61-70. PubMed ID: 477696 [TBL] [Abstract][Full Text] [Related]
4. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates. Ben Cheikh R; Guendouz A; Moravec J Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607 [TBL] [Abstract][Full Text] [Related]
5. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Veech RL; Raijman L; Krebs HA Biochem J; 1970 Apr; 117(3):499-503. PubMed ID: 4315932 [TBL] [Abstract][Full Text] [Related]
6. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase. Bünger R; Mukohara N; Kang YH; Mallet RT Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102 [TBL] [Abstract][Full Text] [Related]
7. Control of the adenylate charge in Novikoff ascites cells. Criss WE Cancer Res; 1973 Jan; 33(1):57-64. PubMed ID: 4345151 [No Abstract] [Full Text] [Related]
8. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. Ikemoto A; Bole DG; Ueda T J Biol Chem; 2003 Feb; 278(8):5929-40. PubMed ID: 12488440 [TBL] [Abstract][Full Text] [Related]
9. Control of the adenylate charge in the Morris "minimal-deviation" hepatomas. Criss WE Cancer Res; 1973 Jan; 33(1):51-6. PubMed ID: 4345150 [No Abstract] [Full Text] [Related]
10. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Soboll S; Scholz R; Heldt HW Eur J Biochem; 1978 Jun; 87(2):377-90. PubMed ID: 668699 [TBL] [Abstract][Full Text] [Related]
11. Benzoic acid metabolism reflects hepatic mitochondrial function in rats with long-term extrahepatic cholestasis. Krähenbühl L; Reichen J; Talos C; Krähenbühl S Hepatology; 1997 Feb; 25(2):278-83. PubMed ID: 9021934 [TBL] [Abstract][Full Text] [Related]
12. Kinetic evidence for the interaction between rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase. Sukhodolets MV; Muronetz VI; Nagradova NK Biochem Int; 1987 Aug; 15(2):373-9. PubMed ID: 3435530 [TBL] [Abstract][Full Text] [Related]
13. Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundiced rabbits. Tanaka J; Ozawa K; Tobe T Gastroenterology; 1979 Apr; 76(4):691-6. PubMed ID: 421996 [TBL] [Abstract][Full Text] [Related]
14. The activation of glycolysis performed by the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in the model system. Arutyunov DY; Muronetz VI Biochem Biophys Res Commun; 2003 Jan; 300(1):149-54. PubMed ID: 12480534 [TBL] [Abstract][Full Text] [Related]
15. Interaction between D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase and its functional consequences. Khoroshilova NA; Muronetz VI; Nagradova NK FEBS Lett; 1992 Feb; 297(3):247-9. PubMed ID: 1544404 [TBL] [Abstract][Full Text] [Related]
16. Bioenergetic scaling: metabolic design and body-size constraints in mammals. Dobson GP; Headrick JP Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7317-21. PubMed ID: 7638188 [TBL] [Abstract][Full Text] [Related]
17. [Behavior of enzyme activity and metabolites (ATP, lactate) in liver tissue before and after preservation]. Wolff H; Walther J; Strassburger P Z Exp Chir; 1973; 6(3):150-5. PubMed ID: 4772896 [No Abstract] [Full Text] [Related]
18. Influence of precursors of biosyntheses on the energy metabolism of the liver cell. Letko G; Küster U; Pohl K Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977 [TBL] [Abstract][Full Text] [Related]
19. Adenine nucleotide transport in hepatoma mitochondria. Characterization of factors influencing the kinetics of ADP and ATP uptake. Chan SH; Barbour RL Biochim Biophys Acta; 1983 Apr; 723(1):104-13. PubMed ID: 6830767 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation state of cytosolic and mitochondrial adenine nucleotides and of pyruvate dehydrogenase in isolated rat liver cells. Siess EA; Wieland OH Biochem J; 1976 Apr; 156(1):91-102. PubMed ID: 133678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]