These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7660310)

  • 61. Lectin-mediated attachment of liposomes to cornea: influence on transcorneal drug flux.
    Schaeffer HE; Breitfeller JM; Krohn DL
    Invest Ophthalmol Vis Sci; 1982 Oct; 23(4):530-3. PubMed ID: 7118509
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Actin in wound-healing of rabbit corneal endothelium. II. Study by nitrobenzoxadiazole-phallacidin method.
    Fujino Y; Tanishima T
    Jpn J Ophthalmol; 1987; 31(3):393-404. PubMed ID: 3430856
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cellular fluorescein hyperfluorescence is dynamin-dependent and increased by Tetronic 1107 treatment.
    Khan TF; Price BL; Morgan PB; Maldonado-Codina C; Dobson CB
    Int J Biochem Cell Biol; 2018 Aug; 101():54-63. PubMed ID: 29800726
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment.
    Vila-Caballer M; Codolo G; Munari F; Malfanti A; Fassan M; Rugge M; Balasso A; de Bernard M; Salmaso S
    J Control Release; 2016 Sep; 238():31-42. PubMed ID: 27444816
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of cytochalasins and colchicine on the ultrastructure of migrating corneal epithelium.
    Gipson IK; Keezer L
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):643-50. PubMed ID: 7200476
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Liposomal drug delivery to the eye and lungs: a preliminary electron microscopy study.
    Singh M; Meisner D; Faulkner G; Mezei M
    J Microencapsul; 1993; 10(1):35-44. PubMed ID: 8445506
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance.
    Enríquez de Salamanca A; Diebold Y; Calonge M; García-Vazquez C; Callejo S; Vila A; Alonso MJ
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1416-25. PubMed ID: 16565375
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.
    Kruszewski FH; Walker TL; DiPasquale LC
    Fundam Appl Toxicol; 1997 Apr; 36(2):130-40. PubMed ID: 9143482
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The preparation of norfloxacin-loaded liposomes and their in-vitro evaluation in pig's eye.
    Lin HH; Ko SM; Hsu LR; Tsai YH
    J Pharm Pharmacol; 1996 Aug; 48(8):801-5. PubMed ID: 8887728
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interaction of liposomes with Kupffer cells in vitro.
    Dijkstra J; van Galen WJ; Hulstaert CE; Kalicharan D; Roerdink FH; Scherphof GL
    Exp Cell Res; 1984 Jan; 150(1):161-76. PubMed ID: 6692845
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fluorescence studies on the mechanism of liposome-cell interactions in vitro.
    Szoka F; Jacobson K; Derzko Z; Papahadjopoulos D
    Biochim Biophys Acta; 1980 Jul; 600(1):1-18. PubMed ID: 7397162
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption.
    Law SL; Huang KJ; Chiang CH
    J Control Release; 2000 Jan; 63(1-2):135-40. PubMed ID: 10640587
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport.
    Xiang CD; Batugo M; Gale DC; Zhang T; Ye J; Li C; Zhou S; Wu EY; Zhang EY
    Drug Metab Dispos; 2009 May; 37(5):992-8. PubMed ID: 19220984
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of urokinase type plasminogen activator (u-PA) in corneal epithelial migration.
    Morimoto K; Mishima H; Nishida T; Otori T
    Thromb Haemost; 1993 Apr; 69(4):387-91. PubMed ID: 8497852
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Competition of solid and fluid liposomes for binding and metabolism with lipids from the cell surface].
    Baĭbakov BA; Galkina SI; Neĭfakh AA; Margolis LB; Molotkovskiĭ IuG
    Tsitologiia; 1985 Sep; 27(9):1021-5. PubMed ID: 4060227
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bidirectional transport of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein, across MDCK-MDR1 cell monolayers.
    Tang F; Ouyang H; Yang JZ; Borchardt RT
    J Pharm Sci; 2004 May; 93(5):1185-94. PubMed ID: 15067695
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells.
    Matsui H; Johnson LG; Randell SH; Boucher RC
    J Biol Chem; 1997 Jan; 272(2):1117-26. PubMed ID: 8995411
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanisms of corneal drug penetration. I: In vivo and in vitro kinetics.
    Grass GM; Robinson JR
    J Pharm Sci; 1988 Jan; 77(1):3-14. PubMed ID: 3126290
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inhibition of corneal epithelial cell migration by cadmium and mercury.
    Ubels JL; Osgood TB
    Bull Environ Contam Toxicol; 1991 Feb; 46(2):230-6. PubMed ID: 2018869
    [No Abstract]   [Full Text] [Related]  

  • 80. Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release.
    Wu X; Yang H; Iserovich P; Fischbarg J; Reinach PS
    J Membr Biol; 1997 Jul; 158(2):127-36. PubMed ID: 9230090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.