BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7660528)

  • 1. Role of endothelium-derived relaxing factor in the maintenance of renal blood flow in a rodent model of chronic hydronephrosis.
    Chen RN; Inman SR; Stowe NT; Novick AC
    Urology; 1995 Sep; 46(3):438-42. PubMed ID: 7660528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelin and endothelium-derived relaxing factor control of basal renovascular tone in hydronephrotic rat kidneys.
    Gulbins E; Hoffend J; Zou AP; Dietrich MS; Schlottmann K; Cavarape A; Steinhausen M
    J Physiol; 1993 Sep; 469():571-82. PubMed ID: 8271216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-derived relaxing factor is important in mediating the high output state in chronic severe anemia.
    Anand IS; Chandrashekhar Y; Wander GS; Chawla LS
    J Am Coll Cardiol; 1995 May; 25(6):1402-7. PubMed ID: 7722140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide.
    De Vriese AS; Stoenoiu MS; Elger M; Devuyst O; Vanholder R; Kriz W; Lameire NH
    Kidney Int; 2001 Jul; 60(1):202-10. PubMed ID: 11422752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation.
    Hoffend J; Cavarape A; Endlich K; Steinhausen M
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F285-92. PubMed ID: 8368337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney.
    Scholz H; Kurtz A
    J Clin Invest; 1993 Mar; 91(3):1088-94. PubMed ID: 8383697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs.
    Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed examination of vascular lesions triggered by an inhibitor of endothelium-derived relaxing factor.
    Tagami M; Ikeda K; Nara Y; Fujino H; Kubota A; Numano F; Yamori Y
    Lab Invest; 1995 Feb; 72(2):174-82. PubMed ID: 7853851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor.
    Tolins JP
    J Lab Clin Med; 1992 Dec; 120(6):941-8. PubMed ID: 1453114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of EDRF-NO in the regulation of bone blood flow in rats: inhibition with L-NAME].
    Kapitola J; Andrle J; Haas T; Kubícková J
    Sb Lek; 1996; 97(4):455-61. PubMed ID: 9424710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal microvascular responses to sepsis are dependent on nitric oxide.
    Spain DA; Wilson MA; Bloom IT; Garrison RN
    J Surg Res; 1994 Jun; 56(6):524-9. PubMed ID: 8015306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between endothelium-derived relaxing factor (EDRF) and eicosanoids in the regulation of the mesenteric microcirculation.
    Kodama T; Marmon LM; Vargas R; Farhat M; Hoy GR; Ramwell PW
    J Surg Res; 1995 Feb; 58(2):227-32. PubMed ID: 7861777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Current results on the hormonal and autoregulatory control of renal blood flow].
    Steinhausen M
    Verh Dtsch Ges Pathol; 1989; 73():149-62. PubMed ID: 2482601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative roles of endothelial relaxing factors in cyclosporine-induced impairment of cholinergic and beta-adrenergic renal vasodilations.
    El-Mas MM; Mohy El-Din MM; El-Gowilly SM; Sharabi FM
    Eur J Pharmacol; 2004 Mar; 487(1-3):149-58. PubMed ID: 15033387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced acetylcholine-induced dilation in afferent arterioles in simvastatin-fed rats.
    Inman SR; Caprio TW; Drummond E; Mueller M; Entenman K
    Vascul Pharmacol; 2006 Jan; 44(1):17-21. PubMed ID: 16290053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversibility of preglomerular active vasoconstriction in the first weeks after complete unilateral ureteral obstruction by inhibition of prostaglandin synthesis.
    Huland H; Gonnermann D; Leichtweiss HP; Dietrich-Hennings R
    J Urol; 1983 Oct; 130(4):820-4. PubMed ID: 6887428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney.
    Baylis C; Harton P; Engels K
    J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of EDRF in the regulation of regional blood flow and vascular resistance at rest and during exercise in conscious dogs.
    Shen W; Lundborg M; Wang J; Stewart JM; Xu X; Ochoa M; Hintze TH
    J Appl Physiol (1985); 1994 Jul; 77(1):165-72. PubMed ID: 7525527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EDRF modulates renal hemodynamics during unilateral ureteral obstruction in the rat.
    Chevalier RL; Thornhill BA; Gomez RA
    Kidney Int; 1992 Aug; 42(2):400-6. PubMed ID: 1383595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.