BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 7661899)

  • 1. A low-barrier hydrogen bond in the catalytic triad of serine proteases.
    Frey PA; Whitt SA; Tobin JB
    Science; 1994 Jun; 264(5167):1927-30. PubMed ID: 7661899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-barrier hydrogen bonding in molecular complexes analogous to histidine and aspartate in the catalytic triad of serine proteases.
    Tobin JB; Whitt SA; Cassidy CS; Frey PA
    Biochemistry; 1995 May; 34(21):6919-24. PubMed ID: 7766600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment.
    Ash EL; Sudmeier JL; De Fabo EC; Bachovchin WW
    Science; 1997 Nov; 278(5340):1128-32. PubMed ID: 9353195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process.
    Ishida T
    Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.
    Fuhrmann CN; Daugherty MD; Agard DA
    J Am Chem Soc; 2006 Jul; 128(28):9086-102. PubMed ID: 16834383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease, Achromobacter protease I.
    Shiraki K; Norioka S; Li S; Yokota K; Sakiyama F
    Eur J Biochem; 2002 Aug; 269(16):4152-8. PubMed ID: 12180992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases?
    Shokhen M; Albeck A
    Proteins; 2004 Feb; 54(3):468-77. PubMed ID: 14747995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developments in the characterisation of the catalytic triad of alpha-chymotrypsin: Effect of the protonation state of Asp102 on the 1H NMR signals of His57.
    Bruylants G; Redfield C; Bartik K
    Chembiochem; 2007 Jan; 8(1):51-4. PubMed ID: 17121406
    [No Abstract]   [Full Text] [Related]  

  • 10. Direct evidence of a low barrier hydrogen bond in the catalytic triad of a Serine protease.
    Agback P; Agback T
    Sci Rep; 2018 Jul; 8(1):10078. PubMed ID: 29973622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms.
    Kaslik G; Westler WM; Gráf L; Markley JL
    Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of the active site from water by the incoming ligand triggers catalysis and inhibition in serine proteases.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2008 Mar; 70(4):1578-87. PubMed ID: 17912756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.
    Petrillo T; O'Donohoe CA; Howe N; Malthouse JP
    Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deuterium isotope effect on the NMR signal of the low-barrier hydrogen bond in a transition-state analog complex of chymotrypsin.
    Cassidy CS; Lin J; Frey PA
    Biochem Biophys Res Commun; 2000 Jul; 273(2):789-92. PubMed ID: 10873682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin.
    Finucane MD; Malthouse JP
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):889-900. PubMed ID: 1417749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen-15 NMR spectroscopy of the catalytic-triad histidine of a serine protease in peptide boronic acid inhibitor complexes.
    Bachovchin WW; Wong WY; Farr-Jones S; Shenvi AB; Kettner CA
    Biochemistry; 1988 Oct; 27(20):7689-97. PubMed ID: 3207700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin.
    Lin J; Cassidy CS; Frey PA
    Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of exceptional valine replacement for highly conserved alanine-55 on the catalytic site structure of chymotrypsin-like serine protease.
    Takeda-Shitaka M; Umeyama H
    Chem Pharm Bull (Tokyo); 1998 Sep; 46(9):1343-8. PubMed ID: 9775431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases.
    Tsilikounas E; Rao T; Gutheil WG; Bachovchin WW
    Biochemistry; 1996 Feb; 35(7):2437-44. PubMed ID: 8652587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.