These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 7661899)
1. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Frey PA; Whitt SA; Tobin JB Science; 1994 Jun; 264(5167):1927-30. PubMed ID: 7661899 [TBL] [Abstract][Full Text] [Related]
2. Low-barrier hydrogen bonding in molecular complexes analogous to histidine and aspartate in the catalytic triad of serine proteases. Tobin JB; Whitt SA; Cassidy CS; Frey PA Biochemistry; 1995 May; 34(21):6919-24. PubMed ID: 7766600 [TBL] [Abstract][Full Text] [Related]
3. A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment. Ash EL; Sudmeier JL; De Fabo EC; Bachovchin WW Science; 1997 Nov; 278(5340):1128-32. PubMed ID: 9353195 [TBL] [Abstract][Full Text] [Related]
4. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process. Ishida T Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622 [TBL] [Abstract][Full Text] [Related]
5. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases. Schutz CN; Warshel A Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633 [TBL] [Abstract][Full Text] [Related]
6. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis. Fuhrmann CN; Daugherty MD; Agard DA J Am Chem Soc; 2006 Jul; 128(28):9086-102. PubMed ID: 16834383 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease, Achromobacter protease I. Shiraki K; Norioka S; Li S; Yokota K; Sakiyama F Eur J Biochem; 2002 Aug; 269(16):4152-8. PubMed ID: 12180992 [TBL] [Abstract][Full Text] [Related]
8. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases? Shokhen M; Albeck A Proteins; 2004 Feb; 54(3):468-77. PubMed ID: 14747995 [TBL] [Abstract][Full Text] [Related]
9. Developments in the characterisation of the catalytic triad of alpha-chymotrypsin: Effect of the protonation state of Asp102 on the 1H NMR signals of His57. Bruylants G; Redfield C; Bartik K Chembiochem; 2007 Jan; 8(1):51-4. PubMed ID: 17121406 [No Abstract] [Full Text] [Related]
10. Direct evidence of a low barrier hydrogen bond in the catalytic triad of a Serine protease. Agback P; Agback T Sci Rep; 2018 Jul; 8(1):10078. PubMed ID: 29973622 [TBL] [Abstract][Full Text] [Related]
11. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms. Kaslik G; Westler WM; Gráf L; Markley JL Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934 [TBL] [Abstract][Full Text] [Related]
12. Screening of the active site from water by the incoming ligand triggers catalysis and inhibition in serine proteases. Shokhen M; Khazanov N; Albeck A Proteins; 2008 Mar; 70(4):1578-87. PubMed ID: 17912756 [TBL] [Abstract][Full Text] [Related]
13. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin. Petrillo T; O'Donohoe CA; Howe N; Malthouse JP Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750 [TBL] [Abstract][Full Text] [Related]
14. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study. Ishida T; Kato S J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882 [TBL] [Abstract][Full Text] [Related]
15. The deuterium isotope effect on the NMR signal of the low-barrier hydrogen bond in a transition-state analog complex of chymotrypsin. Cassidy CS; Lin J; Frey PA Biochem Biophys Res Commun; 2000 Jul; 273(2):789-92. PubMed ID: 10873682 [TBL] [Abstract][Full Text] [Related]
16. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin. Finucane MD; Malthouse JP Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):889-900. PubMed ID: 1417749 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen-15 NMR spectroscopy of the catalytic-triad histidine of a serine protease in peptide boronic acid inhibitor complexes. Bachovchin WW; Wong WY; Farr-Jones S; Shenvi AB; Kettner CA Biochemistry; 1988 Oct; 27(20):7689-97. PubMed ID: 3207700 [TBL] [Abstract][Full Text] [Related]
18. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Lin J; Cassidy CS; Frey PA Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318 [TBL] [Abstract][Full Text] [Related]
19. Effect of exceptional valine replacement for highly conserved alanine-55 on the catalytic site structure of chymotrypsin-like serine protease. Takeda-Shitaka M; Umeyama H Chem Pharm Bull (Tokyo); 1998 Sep; 46(9):1343-8. PubMed ID: 9775431 [TBL] [Abstract][Full Text] [Related]
20. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases. Tsilikounas E; Rao T; Gutheil WG; Bachovchin WW Biochemistry; 1996 Feb; 35(7):2437-44. PubMed ID: 8652587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]