These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 7661899)
21. 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism. Bachovchin WW Biochemistry; 1986 Nov; 25(23):7751-9. PubMed ID: 3542033 [TBL] [Abstract][Full Text] [Related]
22. Converting tissue plasminogen activator to a zymogen: a regulatory triad of Asp-His-Ser. Madison EL; Kobe A; Gething MJ; Sambrook JF; Goldsmith EJ Science; 1993 Oct; 262(5132):419-21. PubMed ID: 8211162 [TBL] [Abstract][Full Text] [Related]
23. Quantum chemical calculations on structural models of the catalytic site of chymotrypsin: comparison of calculated results with experimental data from NMR spectroscopy. Westler WM; Weinhold F; Markley JL J Am Chem Soc; 2002 Dec; 124(48):14373-81. PubMed ID: 12452711 [TBL] [Abstract][Full Text] [Related]
24. 11B NMR spectroscopy of peptide boronic acid inhibitor complexes of alpha-lytic protease. Direct evidence for tetrahedral boron in both boron-histidine and boron-serine adduct complexes. Tsilikounas E; Kettner CA; Bachovchin WW Biochemistry; 1993 Nov; 32(47):12651-5. PubMed ID: 8251483 [TBL] [Abstract][Full Text] [Related]
25. Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. Ash EL; Sudmeier JL; Day RM; Vincent M; Torchilin EV; Haddad KC; Bradshaw EM; Sanford DG; Bachovchin WW Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10371-6. PubMed ID: 10984533 [TBL] [Abstract][Full Text] [Related]
26. A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond. Cassidy CS; Lin J; Frey PA Biochemistry; 1997 Apr; 36(15):4576-84. PubMed ID: 9109667 [TBL] [Abstract][Full Text] [Related]
27. Low barrier hydrogen bond is absent in the catalytic triads in the ground state but Is present in a transition-state complex in the prolyl oligopeptidase family of serine proteases. Kahyaoglu A; Haghjoo K; Guo F; Jordan F; Kettner C; Felföldi F; Polgár L J Biol Chem; 1997 Oct; 272(41):25547-54. PubMed ID: 9325271 [TBL] [Abstract][Full Text] [Related]
28. Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies. Massiah MA; Viragh C; Reddy PM; Kovach IM; Johnson J; Rosenberry TL; Mildvan AS Biochemistry; 2001 May; 40(19):5682-90. PubMed ID: 11341833 [TBL] [Abstract][Full Text] [Related]
29. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. Perona JJ; Craik CS J Biol Chem; 1997 Nov; 272(48):29987-90. PubMed ID: 9374470 [No Abstract] [Full Text] [Related]
30. The Hemophilus influenzae Hap autotransporter is a chymotrypsin clan serine protease and undergoes autoproteolysis via an intermolecular mechanism. Fink DL; Cope LD; Hansen EJ; Geme JW J Biol Chem; 2001 Oct; 276(42):39492-500. PubMed ID: 11504735 [TBL] [Abstract][Full Text] [Related]
31. Crystal versus solution structures of enzymes: NMR spectroscopy of a crystalline serine protease. Smith SO; Farr-Jones S; Griffin RG; Bachovchin WW Science; 1989 May; 244(4907):961-4. PubMed ID: 2499045 [TBL] [Abstract][Full Text] [Related]
32. Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labeled enzyme. Bachovchin WW Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7948-51. PubMed ID: 3934665 [TBL] [Abstract][Full Text] [Related]
33. Protonation-state dependence of hydrogen bond strengths and exchange rates in a serine protease catalytic triad: bovine chymotrypsinogen A. Markley JL; Westler WM Biochemistry; 1996 Aug; 35(34):11092-7. PubMed ID: 8780512 [TBL] [Abstract][Full Text] [Related]
34. 13C and 1H NMR studies of ionizations and hydrogen bonding in chymotrypsin-glyoxal inhibitor complexes. Spink E; Cosgrove S; Rogers L; Hewage C; Malthouse JP J Biol Chem; 2007 Mar; 282(11):7852-61. PubMed ID: 17213185 [TBL] [Abstract][Full Text] [Related]
35. Correlation of low-barrier hydrogen bonding and oxyanion binding in transition state analogue complexes of chymotrypsin. Neidhart D; Wei Y; Cassidy C; Lin J; Cleland WW; Frey PA Biochemistry; 2001 Feb; 40(8):2439-47. PubMed ID: 11327865 [TBL] [Abstract][Full Text] [Related]
36. Evidence for a strong hydrogen bond in the catalytic dyad of transition-state analogue inhibitor complexes of chymotrypsin from proton-triton NMR isotope shifts. Westler WM; Frey PA; Lin J; Wemmer DE; Morimoto H; Williams PG; Markley JL J Am Chem Soc; 2002 Apr; 124(16):4196-7. PubMed ID: 11960433 [TBL] [Abstract][Full Text] [Related]
37. A low-barrier hydrogen bond between histidine of secreted phospholipase A2 and a transition state analog inhibitor. Poi MJ; Tomaszewski JW; Yuan C; Dunlap CA; Andersen NH; Gelb MH; Tsai MD J Mol Biol; 2003 Jun; 329(5):997-1009. PubMed ID: 12798689 [TBL] [Abstract][Full Text] [Related]
38. 13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors. Malthouse JP Biochem Soc Trans; 2007 Jun; 35(Pt 3):566-70. PubMed ID: 17511653 [TBL] [Abstract][Full Text] [Related]
39. Proton nuclear magnetic resonance evidence for the absence of a stable hydrogen bond between the active site aspartate and histidine residues of native subtilisins and for its presence in thiolsubtilisins. Jordan F; Polgár L Biochemistry; 1981 Oct; 20(22):6366-70. PubMed ID: 7030388 [TBL] [Abstract][Full Text] [Related]
40. The 0.83 A resolution crystal structure of alpha-lytic protease reveals the detailed structure of the active site and identifies a source of conformational strain. Fuhrmann CN; Kelch BA; Ota N; Agard DA J Mol Biol; 2004 May; 338(5):999-1013. PubMed ID: 15111063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]