These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 7662764)

  • 1. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance.
    Taga G
    Biol Cybern; 1998 Jan; 78(1):9-17. PubMed ID: 9485584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis.
    Aoi S; Ohashi T; Bamba R; Fujiki S; Tamura D; Funato T; Senda K; Ivanenko Y; Tsuchiya K
    Sci Rep; 2019 Jan; 9(1):369. PubMed ID: 30674970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walking is not like reaching: evidence from periodic mechanical perturbations.
    Ahn J; Hogan N
    PLoS One; 2012; 7(3):e31767. PubMed ID: 22479311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple state-determined model reproduces entrainment and phase-locking of human walking.
    Ahn J; Hogan N
    PLoS One; 2012; 7(11):e47963. PubMed ID: 23152761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.
    Aoi S; Funato T
    Neurosci Res; 2016 Mar; 104():88-95. PubMed ID: 26616311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
    Ni J; Hiramatsu S; Kato A
    J Biomech Eng; 2003 Aug; 125(4):499-506. PubMed ID: 12968574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive locomotion: Investigation and modeling of physically-paired humans while walking.
    Lanini J; Duburcq A; Razavi H; Le Goff CG; Ijspeert AJ
    PLoS One; 2017; 12(9):e0179989. PubMed ID: 28877161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of adaptability to time delay in bipedal locomotion.
    Ohgane K; Ei S; Kazutoshi K; Ohtsuki T
    Biol Cybern; 2004 Feb; 90(2):125-32. PubMed ID: 14999479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musculo-skeletal loading conditions at the hip during walking and stair climbing.
    Heller MO; Bergmann G; Deuretzbacher G; Dürselen L; Pohl M; Claes L; Haas NP; Duda GN
    J Biomech; 2001 Jul; 34(7):883-93. PubMed ID: 11410172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial reflex improves the perturbation-resistance of a human walking simulator.
    Yu W; Ikemoto Y
    Med Biol Eng Comput; 2007 Nov; 45(11):1095-104. PubMed ID: 17909875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher coactivations of lower limb muscles increase stability during walking on slippery ground in forward dynamics musculoskeletal simulation.
    Koo YJ; Hwangbo J; Koo S
    Sci Rep; 2023 Dec; 13(1):22808. PubMed ID: 38129534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.
    Ogihara N; Yamazaki N
    Biol Cybern; 2001 Jan; 84(1):1-11. PubMed ID: 11204394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.