BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 7662771)

  • 1. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance.
    Taga G
    Biol Cybern; 1998 Jan; 78(1):9-17. PubMed ID: 9485584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
    Ni J; Hiramatsu S; Kato A
    J Biomech Eng; 2003 Aug; 125(4):499-506. PubMed ID: 12968574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musculo-skeletal loading conditions at the hip during walking and stair climbing.
    Heller MO; Bergmann G; Deuretzbacher G; Dürselen L; Pohl M; Claes L; Haas NP; Duda GN
    J Biomech; 2001 Jul; 34(7):883-93. PubMed ID: 11410172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.
    Aoi S; Funato T
    Neurosci Res; 2016 Mar; 104():88-95. PubMed ID: 26616311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications.
    Zajac FE; Neptune RR; Kautz SA
    Gait Posture; 2003 Feb; 17(1):1-17. PubMed ID: 12535721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking is not like reaching: evidence from periodic mechanical perturbations.
    Ahn J; Hogan N
    PLoS One; 2012; 7(3):e31767. PubMed ID: 22479311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to focus issue: bipedal locomotion--from robots to humans.
    Milton JG
    Chaos; 2009 Jun; 19(2):026101. PubMed ID: 19566261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.
    Aoi S; Kondo T; Hayashi N; Yanagihara D; Aoki S; Yamaura H; Ogihara N; Funato T; Tomita N; Senda K; Tsuchiya K
    Biol Cybern; 2013 Apr; 107(2):201-16. PubMed ID: 23430278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.
    Ogihara N; Yamazaki N
    Biol Cybern; 2001 Jan; 84(1):1-11. PubMed ID: 11204394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial reflex improves the perturbation-resistance of a human walking simulator.
    Yu W; Ikemoto Y
    Med Biol Eng Comput; 2007 Nov; 45(11):1095-104. PubMed ID: 17909875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Neuro-Musculo-Skeletal Model for Insects With Data-driven Optimization.
    Guo S; Lin J; Wöhrl T; Liao M
    Sci Rep; 2018 Feb; 8(1):2129. PubMed ID: 29391409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.
    Ackermann M; van den Bogert AJ
    J Biomech; 2012 Apr; 45(7):1293-8. PubMed ID: 22365845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher coactivations of lower limb muscles increase stability during walking on slippery ground in forward dynamics musculoskeletal simulation.
    Koo YJ; Hwangbo J; Koo S
    Sci Rep; 2023 Dec; 13(1):22808. PubMed ID: 38129534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.