These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 7662771)

  • 21. Analytical method for the analysis and simulation of human locomotion.
    Amirouche FM; Ider SK; Trimble J
    J Biomech Eng; 1990 Nov; 112(4):379-86. PubMed ID: 2273863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis.
    Aoi S; Ohashi T; Bamba R; Fujiki S; Tamura D; Funato T; Senda K; Ivanenko Y; Tsuchiya K
    Sci Rep; 2019 Jan; 9(1):369. PubMed ID: 30674970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple state-determined model reproduces entrainment and phase-locking of human walking.
    Ahn J; Hogan N
    PLoS One; 2012; 7(11):e47963. PubMed ID: 23152761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic stability and phase resetting during biped gait.
    Nomura T; Kawa K; Suzuki Y; Nakanishi M; Yamasaki T
    Chaos; 2009 Jun; 19(2):026103. PubMed ID: 19566263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait.
    De Groote F; Falisse A
    Proc Biol Sci; 2021 Mar; 288(1946):20202432. PubMed ID: 33653141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early motor development from partially ordered neural-body dynamics: experiments with a cortico-spinal-musculo-skeletal model.
    Kuniyoshi Y; Sangawa S
    Biol Cybern; 2006 Dec; 95(6):589-605. PubMed ID: 17123097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of quadrupedal locomotion of monkeys: implications for central control.
    Xiang Y; John P; Yakushin SB; Kunin M; Raphan T; Cohen B
    Exp Brain Res; 2007 Mar; 177(4):551-72. PubMed ID: 17006683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterned control of human locomotion.
    Lacquaniti F; Ivanenko YP; Zago M
    J Physiol; 2012 May; 590(10):2189-99. PubMed ID: 22411012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal analysis of locomotion in BALB/cByJ and C57BL/6J mice in different environmental conditions.
    Lepicard EM; Venault P; Abourachid A; Pellé E; Chapouthier G; Gasc JP
    Behav Brain Res; 2006 Feb; 167(2):365-72. PubMed ID: 16290280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.
    Prentice SD; Patla AE; Stacey DA
    Exp Brain Res; 1998 Dec; 123(4):474-80. PubMed ID: 9870606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3D Musculo-Mechanical Model of the Salamander for the Study of Different Gaits and Modes of Locomotion.
    Harischandra N; Cabelguen JM; Ekeberg O
    Front Neurorobot; 2010; 4():112. PubMed ID: 21206530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A neuro-mechanical model of legged locomotion: single leg control.
    Wadden T; Ekeberg O
    Biol Cybern; 1998 Aug; 79(2):161-73. PubMed ID: 9791936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuromechanical control of locomotion in the rat.
    Thota AK; Watson SC; Knapp E; Thompson B; Jung R
    J Neurotrauma; 2005 Apr; 22(4):442-65. PubMed ID: 15853462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.