These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7662828)

  • 61. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures.
    Hasegawa S; Ishii S; Tamura J; Furukawa T; Neo M; Matsusue Y; Shikinami Y; Okuno M; Nakamura T
    Biomaterials; 2006 Mar; 27(8):1327-32. PubMed ID: 16213581
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics.
    Kobayashi S; Kawai W; Wakayama S
    J Mater Sci Mater Med; 2006 Nov; 17(11):1089-93. PubMed ID: 17122923
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):441-8. PubMed ID: 15081550
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit.
    Darimont GL; Cloots R; Heinen E; Seidel L; Legrand R
    Biomaterials; 2002 Jun; 23(12):2569-75. PubMed ID: 12033605
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants.
    Tisdel CL; Goldberg VM; Parr JA; Bensusan JS; Staikoff LS; Stevenson S
    J Bone Joint Surg Am; 1994 Feb; 76(2):159-71. PubMed ID: 8113249
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface.
    Edwards JT; Brunski JB; Higuchi HW
    J Biomed Mater Res; 1997 Sep; 36(4):454-68. PubMed ID: 9294761
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hydroxyapatite-coated strain gauges for long-term in vivo bone strain measurements.
    Maliniak MM; Szivek JA; DeYoung DW; Emmanual J
    J Appl Biomater; 1993; 4(2):143-52. PubMed ID: 10171661
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation.
    Epure LM; Dimitrievska S; Merhi Y; Yahia L'
    J Biomed Mater Res A; 2007 Dec; 83(4):1009-1023. PubMed ID: 17584892
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Effect of a nano hydroxyapatite desensitizing paste application on dentin bond strength of three self-etch adhesive systems].
    Pei DD; Liu SY; Yang HY; Gan J; Huang C
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 May; 52(5):278-282. PubMed ID: 28482442
    [No Abstract]   [Full Text] [Related]  

  • 71. Bone attachment to hydroxyapatite coated polymers.
    Boone PS; Zimmerman MC; Gutteling E; Lee CK; Parsons JR; Langrana N
    J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):183-99. PubMed ID: 2674147
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants.
    Maxian SH; Zawadsky JP; Dunn MG
    J Biomed Mater Res; 1993 Jun; 27(6):717-28. PubMed ID: 8408101
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations.
    Wie H; Herø H; Solheim T
    Int J Oral Maxillofac Implants; 1998; 13(6):837-44. PubMed ID: 9857595
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Strength of bonding between A-W glass-ceramic and the surface of bone cortex.
    Yoshii S; Kakutani Y; Yamamuro T; Nakamura T; Kitsugi T; Oka M; Kokubo T; Takagi M
    J Biomed Mater Res; 1988 Dec; 22(3 Suppl):327-38. PubMed ID: 3235467
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The interface of calcium-phosphate and glass-ceramic in bone, a structural analysis.
    Gross UM; Müller-Mai CM; Voigt C
    Biomaterials; 1990 Jul; 11():83-5. PubMed ID: 2397266
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering.
    Guo H; Khor KA; Boey YC; Miao X
    Biomaterials; 2003 Feb; 24(4):667-75. PubMed ID: 12437961
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative study of bone cements prepared with either HA or alpha-TCP and functionalized methacrylates.
    Canul-Chuil A; Vargas-Coronado R; Cauich-Rodríguez JV; Martínez-Richa A; Fernandez E; Nazhat SN
    J Biomed Mater Res B Appl Biomater; 2003 Jan; 64(1):27-37. PubMed ID: 12474244
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.
    Lee JH; Hong KS; Baek HR; Seo JH; Lee KM; Ryu HS; Lee HK
    Artif Organs; 2013 Jul; 37(7):656-62. PubMed ID: 23639194
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity.
    Ajeesh M; Francis BF; Annie J; Harikrishna Varma PR
    J Mater Sci Mater Med; 2010 May; 21(5):1427-34. PubMed ID: 20195889
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.
    Choy MT; Tang CY; Chen L; Wong CT; Tsui CP
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():746-56. PubMed ID: 25063176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.